Objective: Solve the problems of difficulties of Daqu fermentation detection, judge the fermentation state judgement, and controlling. Methods: The Tent-SSA optimized BP neural network algorithm Daqu fermentation humidity prediction model and dynamic threshold control algorithm were proposed to realize real-time judgment of Daqu state and Daqu fermentation control during Daqu fermentation process. Results: The error predicted by The simulation prediction model for humidity prediction had low error (0.596%), good robust performance and fast convergence speed. Conclusion: The Daqu monitoring system based on this model is accurate and reliable.

Publication Date


First Page


Last Page





[1] 黄和强,车富红,陈占秀,等.青稞大曲微生物菌群的多样性及其核心菌群的判定[J].食品与发酵工业,2021,47(23):305-310.HUANG H Q,CHE F H,CHEN Z X,et al.Determination of microbial diversity and core microbiota in highland barley Daqu[J].Food and Fermentation Industries,2021,47(23):305-310.
[2] 申孟林,张超,王玉霞.白酒大曲微生物研究进展[J].中国酿造,2016,35(5):1-5.SHEN M L,ZHANG C,WANG Y X.Research progress of microbes in liquor Daqu[J].China Brewing,2016,35(5):1-5.
[3] 吴生文,张志刚,李旭晖.大曲微生物在大曲酒生产中的研究开发现状及发展前景[J].中国酿造,2011(5):8-13.WU S W,ZHANG Z G,LI X H.Research progress on microorganism in Daqu liquor[J].China Brewing,2011(5):8-13.
[4] 刘国海,江辉,梅从立.基于dbiPLS-SPA变量筛选的固态发酵湿度近红外光谱检测[J].农业工程学报,2013,29(S1):218-222.LIU G H,JIANG H,MEI C L.Rapid detection of moisture content in solid-state fermentation by near-infrared spectroscopy combinedwith dbiPLS-SPA[J].Transactions of the Chinese Society of Agricultural Engineering,2013,29(S1):218-222.
[5] 刘慧,周建新,方勇,等.不同储藏温、湿度对稻谷霉菌生长的影响及生长预测模型的建立[J].中国粮油学报,2020,35(2):110-115.LIU H,ZHOU J X,FANG Y,et al.Effects of different storage temperature and humidity on the growth of mold in paddy and establishment of growth prediction model[J].Journal of the Chinese Cereals and Oils Association,2020,35(2):110-115.
[6] 王学智,李清亮,李文辉.融合迁移学习的土壤湿度预测时空模型[J].吉林大学学报(工学版),2021,52(3):675-683.WANG X Z,LI Q L,LI W H.Spatio-temporal model of soil moisture prediction integrated with transfer learning[J].Journal of Jilin University(Engineering and Technology Edition),2021,52(3):675-683.
[7] 徐佳乐,黄丹平,田建平,等.新型曲房内循环温度测控系统设计[J].食品与机械,2020,36(12):90-94.XU J L,HUANG D P,TIAN J P,et al.New cycle temperature measurementand control system in kojibank[J].Food & Machinery,2020,36(12):90-94.
[8] OUYANG C,ZHU D,QIU Y.Lens learning sparrow search algorithm[J].Mathematical Problems in Engineering,2021(2):1-17.
[9] CHEN X,HUANG X,ZHU D,et al.Research on chaotic flying sparrow search algorithm[J].Journal of Physics:Conference Series,2021,1 848:29-31.
[10] 魏鹏飞,樊小朝,史瑞静,等.基于改进麻雀搜索算法优化支持向量机的短期光伏发电功率预测[J].热力发电,2021,50(12):74-79.WEI P F,FAN X C,SHI R J,et al.Short-term photovoltaic power generation forecast based on improved sparrow search algorithm optimized support vector machine[J].Thermal Power Generation,2021,50(12):74-79.
[11] 付华,刘昊.多策略融合的改进麻雀搜索算法及其应用[J].控制与决策,2021,37(1):87-96.FU H,LIU H.Improved sparrow search algorithm with multi-strategy integration and its application[J].Control and Decision,2021,37(1):87-96.
[12] 吕鑫,慕晓冬,张钧,等.混沌麻雀搜索优化算法[J].北京航空航天大学学报,2021,47(8):1 712-1 720.LU X,MU X D,ZHANG J,et al.Chaos sparrow search optimization algorithm[J].Journal of Beijing University of Aeronautics and Astronautics,2021,47(8):1 712-1 720.
[13] 吴少杰,刘怀举,张仁华,等.基于正交实验和数据驱动的喷丸表面完整性参数预测[J].表面技术,2021,50(4):86-95.WU S J,LIU H J,ZHANG R H,et al.Prediction of surface integrity parameters of shot peening based on orthogonal experiment and data-driven[J].Surface Technology,2021,50(4):86-95.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.