Corresponding Author(s)

李斌(1960—),女,华南农业大学教授,博士。E-mail: bli@scau.edu.cn林晓蓉(1986—),女,华南农业大学讲师,博士。E-mail: xiaoronglin@scau.edu.cn


Objective: This study aimed to explore the composition and the functional bioactivity of tea polyphenols from cocoa tea. Methods: Chemical components of crude green tea polyphenol extracts from cocoa tea were analyzed and identified using high resolution mass spectrometry. Additionally, their potential functional effects were predicted by network pharmacological analysis. Results: The in vitro hyperglycemic potential of crude green tea polyphenol from cocoa tea was preliminarily confirmed based on their strong inhibition on α-glucosidase and α-amylase. Six key targets including GAPDH and AKT and multiple pathways such as PI3K-AKT were predicted to be involved in the underying mechanisms behind the hyperglycemic effects of crude green tea polyphenol from cocoa tea through the GO enrichment and KEGG enrichment analysis. Ten polyphenol components including myricetin, anthocyanin, etc. were suggested to play a key role in the hyperglycemic activities of crude green tea polyphenol from cocoa tea via the construction of a “component-target-pathway” network combined with the molecular docking between these components and starch hydrolase. Conclusion: Crude green tea polyphenols from cocoa tea exerted a high hypoglycemic effect by regulating multi-targets through multi-pathways via multi-components.

Publication Date


First Page


Last Page





[1] 张宏达, 叶创兴, 张润梅, 等. 中国发现新的茶叶资源——可可茶[J]. 中山大学学报(自然科学版), 1988(3): 131-133. ZHANG H D, YE C X, ZHANG R M, et al. A discovery of a new tea resource—cocoa tea tree containing theobromine from China[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1988(3): 131-133.
[2] LI K K, SHI X G, YANG X R, et al. Antioxidative activities and the chemical constituents of two Chinese teas, Camellia kucha and C. ptilophylla[J]. International Journal of Food Science & Technology, 2012, 47(5): 1 063-1 071.
[3] 刘诗妤, 陈忠正, 林晓蓉, 等. 南昆山毛叶茶对tBHP诱导损伤NIH3T3细胞的保护效果[J]. 食品工业科技, 2021, 42(2): 90-98. LIU S Y, CHEN Z Z, LIN X R, et al. Protective effect of Camellia ptilophylla Chang on the tBHP-induced NIH3T3 cells[J]. Science and Technology of Food Industry, 2021, 42(2): 90-98.
[4] LIN X R, CHEN Z Z, ZHANG Y Y, et al. Interactions among chemical components of cocoa tea (Camellia ptilophylla Chang), a naturally low caffeine-containing tea species[J]. Food & Function, 2014, 5(6): 1 175-1 185.
[5] GAO X, LI X, HE C T, et al. Cocoa tea (Camellia ptilophylla) induces mitochondria-dependent apoptosis in HCT116 cells via ROS generation and PI3K/Akt signaling pathway[J]. Food Research International, 2020, 129: 108854.
[6] GAO X, LIN X R, LI X F, et al. Cellular antioxidant, methylglyoxal trapping, and anti-inflammatory activities of cocoa tea (Camellia ptilophylla Chang) [J]. Food & Function, 2017, 8(8): 2 836-2 846.
[7] PENG J M, JIA Y, HU T Y, et al. GC-(4→8)-GCG, A proanthocyanidin dimer from Camellia ptilophylla, modulates obesity and adipose tissue inflammation in high-fat diet induced obese mice[J]. Molecular Nutrition & Food Research, 2019, 63(11): 1900082.
[8] LI Y F, QIU S H, CHANG Y Q, et al. A comparative analysis of chemical compositions in Camellia sinensis var. puanensis Kurihara, a novel Chinese tea, by HPLC and UFLC-Q-TOF-MS/MS[J]. Food Chemistry, 2017, 216: 282-288.
[9] ZHOU J, FANG T T, LI W, et al. Widely targeted metabolomics using UPLC-QTRAP-MS/MS reveals chemical changes during the processing of black tea from the cultivar Camellia sinensis (L.) O. Kuntze cv. Huangjinya[J]. Food Research International, 2022, 162: 112169.
[10] 解静, 高杉, 李琳, 等. 网络药理学在中药领域中的研究进展与应用策略[J]. 中草药, 2019, 50(10): 2 257-2 265. XIE J, GAO S, LI L, et al. Research progress and application strategy on network pharmacology in Chinese materia medica[J]. Chinese Traditional and Herbal Drugs, 2019, 50(10): 2 257-2 265.
[11] 董海玉, 梁建庆, 何建成, 等. 基于网络药理学探讨石菖蒲—绿茶药对治疗帕金森病的分子机制[J]. 中医药通报, 2022, 21(11): 46-51. DONG H Y, LIANG J Q, HE J C, et al. Study on molecular mechanism of Acorus Tatarinowii and green tea in treating Parkinson's disease based on network pharmacology[J]. Traditional Chinese Medicine Journal, 2022, 21(11): 46-51.
[12] 宋琴, 李佳川, 李思颖, 等. 基于多元网络的藤茶总黄酮部位抗高尿酸血症认知障碍机制研究[J]. 西南民族大学学报(自然科学版), 2022, 48(4): 400-409. SONG Q, LI J C, LI S Y, et al. Study on the mechanism of action of total flavonoids in vine tea against hyperuricemia dementia based on multi-organism network[J]. Journal of Southwest University for Nationalities (Natrual Science Edition), 2022, 48(4): 400-409.
[13] 赵鑫铖, 张红. 基于网络药理学方法分析苦丁茶治疗结肠癌的分子机制[J]. 海南大学学报(自然科学版), 2022, 40(2): 142-150. ZHAO X C, ZHANG H. Molecular mechanisms analysis of Ilex Kudingcha in the treatment of colon cancer based on Network Pharmacology[J]. Natural Science Journal of Hainan University, 2022, 40(2): 142-150.
[14] 旷小珊, 高雄, 林晓蓉, 等. 南昆山毛叶茶三种多酚的分离纯化及抗氧化研究[J]. 食品工业科技, 2020, 41(5): 31-39. KUANG X S, GAO X, LIN X R, et al. Isolation, purification and antioxidant activities of three kinds of polyphenol monomers from Camellia ptilophylla Chang[J]. Science and Technology of Food Industry, 2020, 41(5): 31-39.
[15] 肖梦君, 高志晖, 王灿红, 等. 基于网络药理学的2-(2-苯乙基)色酮类成分潜在作用靶点及作用机制预测[J]. 世界科学技术: 中医药现代化, 2021, 23(7): 2 170-2 180. XIAO M J, GAO Z H, WANG C H, et al. Prediction of the potential targets and possible intervention diseases M\\mechanism of 2(2-phenylethyl) chromones based on Network Pharmacology[J]. Modernization of Traditional Chinese Medicine and Materia Medica: World Science and Technology, 2021, 23(7): 2 170-2 180.
[16] 梁林盼, 凌雪, 方姣, 等. 基于网络药理学和分子对接探讨瑶山甜茶治疗2型糖尿病的作用机制[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 143-154. LIANG L P, LING X,FANG J, et al. Mechanism of Rubus suavissmus S. Lee in intervention of Type 2 diabetes mellitus based on Network Pharmacology and molecular docking method[J]. Journal of Guangxi Normal University (Natural Science Edition), 2023, 41(1): 143-154.
[17] 王腾飞, 段瑞斌, 杨佳丽, 等. 基于网络药理学和分子对接探讨毛建茶干预高脂血症的作用机制[J]. 食品科学, 2023, 44(9): 7-14. WANG T F, DUAN R B, YANG J L, et al. Exploring the mechanism of Dracocephalum rupestre hance tea interfering with hyperlipidemia based on network pharmacology and molecular docking[J]. Food Science, 2023, 44(9): 7-14.
[18] DENG Y J, HUANG L X, ZHANG C H, et al. Novel polysaccharide from Chaenomeles speciosa seeds: Structural characterization, α-amylase and α-glucosidase inhibitory activity evaluation[J]. International Journal of Biological Macromolecules, 2020, 153: 755-766.
[19] 赵凯, 许鹏举, 谷广烨. 3,5-二硝基水杨酸比色法测定还原糖含量的研究[J]. 食品科学, 2008, 29(8): 534-536. ZHAO K, XU P Q, GU G Y. Study on determination of reducing sugar content using 3, 5-dinitrosalicylic acid[J]. Food Science, 2008, 29(8): 534-536.
[20] 沈荷玉, 李梦阳, 敖婧芳, 等. 没食子酸对α-淀粉酶和α-葡萄糖苷酶的抑制作用及机理[J/OL]. 食品科学. (2023-03-17) [2023-05-12]. http://kns.cnki.net/kcms/detail/11.2206.TS.20230316.1230.018.html. SHEN H Y, LI M Y, AO J F, et al. Inhibition effects and mechanisms of gallic acid on α-amylase and α-glucosidase[J/OL]. Food Science. (2023-03-17) [2023-05-12]. http://kns.cnki.net/kcms/detail/11.2206.TS.20230316.1230.018.html.
[21] 陆鹏, 王校常, 汪瑛琦. 茶叶在抵抗Ⅱ型糖尿病中的作用[J]. 浙江大学学报(农业与生命科学版), 2016, 42(3): 358-367. LU P, WANG X H, WANG Y Q. Overview of tea constituents against type 2 diabetes[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2016, 42(3): 358-367.
[22] LIU Y H, QIU Y, CHEN Q G, et al. Puerarin suppresses the hepatic gluconeogenesis via activation of PI3K/Akt signaling pathway in diabetic rats and HepG2 cells[J]. Biomedicine & Pharmacotherapy, 2021, 137: 111325.
[23] CHEN L, TENG H, CAO H. Chlorogenic acid and caffeic acid from Sonchus oleraceus Linn synergistically attenuate insulin resistance and modulate glucose uptake in HepG2 cells[J]. Food and Chemical Toxicology, 2019, 127: 182-187.
[24] XIA T D, ZHANG W Z. Polyphenol-rich extract of Zhenjiang aromatic vinegar ameliorates high glucose-induced insulin resistance by regulating JNK-IRS-1 and PI3K/Akt signaling pathways[J]. Food Chemistry, 2021, 335: 127513.
[25] WU Z M, YU W X, NI W J, et al. Improvement of obesity by Liupao tea is through the IRS-1/PI3K/AKT/GLUT4 signaling pathway according to network pharmacology and experimental verification[J]. Phytomedicine, 2023, 110: 154633.
[26] 逯红林, 赵亚芸, 沈海涛, 等. UPLC-MS/MS法同时测定天山茶藨茎14个酚类成分及其降血糖活性[J]. 药物分析杂志, 2021(10): 1 697-1 706. LU H L, ZHAO Y Y, SHEN H T, et al. Simultaneous determination of 14 phenols from Ribes meyeri stem by UPLC-MS/MS and their antidiabetic activity[J]. Chinese Journal of Pharmaceutical Analysis, 2021(10): 1 697-1 706.
[27] 逯凤肖, 王恩花, 秦湉, 等. 二氢杨梅素对糖尿病小鼠降糖作用研究[J]. 中药药理与临床, 2016, 32(3): 45-48. LU F X, WANG E H, QIN T, et al. Hypoglycemic effect of dihydromyricetin from Ampelopsis grossedentata on diabetic mice[J]. Pharmacology and Clinics of Chinese Materia Medica, 2016, 32(3): 45-48.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.