Objective: To improve fruit classification accuracy while considering low computational cost and low sensor cost. Methods: A fruit classification system based on capacitive pressure sensor was proposed. The system used support vector machine algorithm with a Gaussian kernel function (GKF-SVM) to classify fruits. The capacitive pressure sensors used were made of thin copper sheets and a layer of vinyl acetate, and these sensors were fixed to the thumb and index finger of a polyamide spandex glove that simulates a robotic hand. The obtained capacitance value was expressed in the form of digital level, and the data was extracted by data processing software, and the capacitance data was processed by SVM algorithm with kernel functions to determine the category of a fruit. Results: The classification results of 11 kinds of fruits in the designed classification system shown that the smart glove using GKF-SVM algorithm could achieve high accuracy classification of fruits, which could trade off between classification accuracy, calculation cost and low sensor cost according to actual fruit classification needs. Conclusion: The research results can be used to develop electronic systems for fruit classification to improve the fruit classification performance of classification manipulators.

Publication Date


First Page


Last Page





[1] 王志宇. 基于RGB图像检测的水果分拣控制算法研究[J]. 农机化研究, 2022, 44(3): 38-42. WANG Z Y. Design of fruit sorting control algorithm based on RGB image detection[J]. Journal of Agricultural Mechanization Research, 2022, 44(3): 38-42.
[2] 胡国喜, 王超, 刘宇珩. 基于改进光滑滑模阻抗控制的水果分拣机械人夹持机构控制方法[J]. 食品与机械, 2021, 37(2): 130-134. HU G X, WANG C, LIU Y H. A control technique for clamping mechanism of fruit sorting robot based on improved smooth sliding mode impedance control[J]. Food & Machinery, 2021, 37(2): 130-134.
[3] RISMA P, DEWI T, PRATAMA K R, et al. Pneumatic-powered fruit sorting arm robot manipulator[J]. Technology Reports of Kansai University, 2021, 63(3): 7 463-7 474.
[4] 李泽平, 郭俊先, 郭阳, 等. 基于支持向量机的无核白葡萄串分级系统设计与测试[J]. 食品与机械, 2021, 37(10): 106-111, 246. LI Z P, GUO J X, GUO Y, et al. Design and test of the grading system for kernel-free white grapes with support vector machine[J]. Food & Machinery, 2021, 37(10): 106-111, 246.
[5] 郑如新, 孙青云, 马素慧, 等. 基于高斯混合模型的水果分类识别方法研究[J]. 制造业自动化, 2022, 44(12): 16-19. ZHENG R X, SUN Q Y, MA S H, et al. Research on fruit classification and recognition method based on Gaussian mixture model[J]. Maufacturing Automation, 2022, 44(12): 16-19.
[6] UKWUOMA C C, ZHIGUANG Q, BIN HEYAT M B, et al. Recent advancements in fruit detection and classification using deep learning techniques[J]. Mathematical Problems in Engineering, 2022, 2 022: 1-29.
[7] ZHANG J, LAI S, YU H, et al. Fruit classification utilizing a robotic gripper with integrated sensors and adaptive grasping[J]. Mathematical Problems in Engineering, 2021, 2 021: 1-15.
[8] ELSHEIKH E A. An efficient classification process using supervised deep learning and robot positioning based on embedded PD-FLC[C]// 2022 10th International Japan-Africa Conference on Electronics, Communications, and Computations (JAC-ECC). Alexandria, Egypt: IEEE, 2022: 164-168.
[9] ZHANG S, ZHANG B, ZHAO D, et al. Nondestructive dimension sorting by soft robotic grippers integrated with triboelectric sensor[J]. ACS Nano, 2022, 16(2): 3 008-3 016.
[10] 佘明华, 徐瑞东, 韦继超, 等. 纺织基柔性触觉传感器及可穿戴应用进展[J]. 丝绸, 2023, 60(3): 60-72. SHE M H, XU R D, WEI J C, et al. Textile-based flexible tactile sensors and wearable applications[J]. Journal of Silk, 2023, 60(3): 60-72.
[11] 卢海洋, 姚涛, 陈盛华, 等. 大量程柔性电容式触觉传感器及其阵列[J]. 微纳电子技术, 2022, 59(7): 657-664. LU H Y, YAO T, CHEN S H, et al. Large-range flexible capacitive tactile sensor and its array[J]. Micronanoelectronic Technology, 2022, 59(7): 657-664.
[12] 陈英龙, 解佳森, 朱沣樟, 等. 基于介质层耦合的柔性触觉传感器空间分辨率补偿方法研究[J]. 液压与气动, 2021, 45(4): 32-39. CHEN Y L, XIE J S, ZHU F Z, et al. Spatial resolution of flexible tactile sensor based on dielectric layer coupling research on compensation method[J]. Chinese Hydraulics & Pneumatics, 2021, 45(4): 32-39.
[13] 潘曦, 李冉, 魏敏, 等. 萤火虫优化支持向量机参数的近红外光谱技术鉴别卷烟牌号[J]. 食品与机械, 2022, 38(7): 85-90, 98. PAN X, LI R, WEI M, et al. Discrimination of cigarette based on near-infrared spectroscopy technology and firefly algorithm optimized support vector machine[J]. Food & Machinery, 2022, 38(7): 85-90, 98.
[14] 张保霞. 基于主成分分析和改进支持向量机的猪肉品质识别[J]. 食品与机械, 2022, 38(1): 146-151. ZHANG B X. Pork quality identification based on principal component analysis and improved support vector machine[J]. Food & Machinery, 2022, 38(1): 146-151.
[15] 谭卢敏, 冯新刚. 基于机器学习算法的缺损米粉块在线快速检测[J]. 食品与机械, 2022, 38(5): 78-81, 86. TAN L M, FENG X G. On line fast detection of defective rice flour based on machine learning algorithm[J]. Food & Machinery, 2022, 38(5): 78-81, 86.
[16] 王俊平, 徐刚. 机器视觉和电子鼻融合的番茄成熟度检测方法[J]. 食品与机械, 2022, 38(2): 148-152. WANG J P, XU G. Research on tomato maturity detection method based on machine vision and electronic nose fusion[J]. Food & Machinery, 2022, 38(5): 78-81, 86.
[17] 楚松峰, 赵凤霞, 方双, 等. 基于PCA-SVM的红枣缺陷识别方法[J]. 食品与机械, 2021, 37(1): 156-160, 198. CHU S F, ZHAO F X, FANG S, et al. Recognition method of jujube defects based on PCA-SVM[J]. Food & Machinery, 2021, 37(1): 156-160, 198.
[18] 周开伟, 钱雪忠, 周世兵. 一种改进的多分类孪生支持向量机[J]. 计算机应用与软件, 2022, 39(4): 269-274, 299. ZHOU K W, QIAN X Z, ZHOU S B. An improved multi-classification twin support vector machine[J]. Computer Applications and Software, 2022, 39(4): 269-274, 299.
[19] 张晓鹏, 张兴忠. 基于高斯核函数的支持向量机光伏故障诊断研究[J]. 可再生能源, 2021, 39(6): 760-765. ZHANG X P, ZHANG X Z. Research on photovoltaic fault diagnosis based on time domain characteristics[J]. Renewable Energy Resources, 2021, 39(6): 760-765.
[20] ZHANG X, LI C, WANG X, et al. A novel fault diagnosis procedure based on improvedsymplectic geometry mode decomposition and optimized SVM[J]. Measurement, 2021, 173: 108644.
[21] SAVAS C, DOVIS F. The impact of different kernel functions on the performance of scintillation detection based on support vector machines[J]. Sensors, 2019, 19(23): 5 219.
[22] 粟傈, 杨帆, 王向禹, 等. 基于事件相机的机器人感知与控制综述[J]. 自动化学报, 2022, 48(8): 1 869-1 889. SU L, YANG F, WANG X Y, et al. A survey of robot perception and control based on event camera[J]. Acta Automatica Sinica, 2022, 48(8): 1 869-1 889.
[23] AROYO A M, PASQUALI D, KOTHIG A, et al. Expectations vs. reality: Unreliability and transparency in a treasure hunt game with iCub[J]. IEEE Robotics and Automation Letters, 2021, 6(3): 5 681-5 688.
[24] PRETI M L, TOTARO M, FALOTICO E, et al. Optical-based technologies for artificial soft tactile sensing[M]// Electronic Skin. Gistrup, Denmark: River Publishers, 2022: 73-99.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.