•  
  •  
 

Corresponding Author(s)

谢晶(1968—),女,上海海洋大学教授,博士。E-mail:jxie@shou.edu.cn

Abstract

This paper introduces the low-carbon quantitative index and energy consumption evaluation standard of cold storages, then systematically summarizes the novel low-carbon technologies and their application in cold storages from three aspects: refrigeration technology, cold thermal energy storage and air distribution optimization and finally prospects the development of cold storages in the future.

Publication Date

4-25-2023

First Page

221

Last Page

227

DOI

10.13652/j.spjx.1003.5788.2022.90222

References

[1] 郝敬熙, 韩祥民, 唐建国. 对冷库节能的考核标准与考核方法的探讨[J]. 制冷与空调, 2012, 12(5): 1-7.
[2] 甄仌, 赵玥, 樊海月. 冷库能耗评价及能效等级划分的探讨[J]. 黑龙江科技信息, 2016(2): 121-122.
[3] YU B B, YANG J Y, WANG D D, et al. An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle[J]. Energy, 2019, 189: 116147.
[4] 刘军, 董磊, 全峰. 某大型冷库制冷系统的选择[J]. 冷藏技术, 2019, 42(4): 38-40.
[5] BRUNO F, BELUSKO M, HALAWA E. CO2 refrigeration and heat pump systems: A comprehensive review[J]. Energies, 2019, 12(15): 2 959.
[6] LIU X, YU K H, WAN X C, et al. Conventional and advanced exergy analyses of transcritical CO2 ejector refrigeration system equipped with thermoelectric subcooler[J]. Energy Reports, 2021, 7: 1 765-1 779.
[7] 周成君, 申江, 杨建国, 等. 新型CO2冷库制冷系统的理论和实验分析[J]. 低温与超导, 2017, 45(4): 51-54, 71.
[8] BELUSKO M, LIDDLE R, ALEMU A, et al. Performance evaluation of a CO2 refrigeration system enhanced with a dew point cooler[J]. Energies, 2019, 12(6): 1076.
[9] CATALAN-GIL J, NEBOT-ANDRES L, SANCHEZ D, et al. Improvements in CO2 booster architectures with different economizer arrangements[J]. Energies, 2020, 13(5): 1 271.
[10] HAN Y H, LI M, WANG Y F, et al. Impedance matching control strategy for a solar cooling system directly driven by distributed photovoltaics[J]. Energy, 2019, 168: 953-965.
[11] 李泽宇, 许永睿, 陈宏铠. 太阳能复合制冷系统用于冷库的热力经济分析[J]. 华南理工大学学报(自然科学版), 2020, 48(12): 27-33, 81.
[12] HAN K D, JI J, CAI J Y, et al. Experimental and numerical investigation on a novel photovoltaic direct-driven ice storage air-conditioning system[J]. Renewable Energy, 2021, 172: 514-528.
[13] LILLO-BRAVO I, BOBADILLA M A, MORENO-TEJERA S, et al. A novel storage system for cooling stand-alone photovoltaic installations[J]. Renewable Energy, 2020, 155: 23-37.
[14] SARAFOJI P, MARIAPPAN V, ANISH R, et al. Performance study of solar photovoltaic cold storage system using phase change materials[J]. Materials Today: Proceedings, 2021, 46: 9 623-9 629.
[15] ZHOU X Y, ZHANG Y, MA X, et al. Performance characteristics of photovoltaic cold storage under composite control of maximum power tracking and constant voltage per frequency[J]. Applied Energy, 2022, 305: 117840.
[16] 周晓艳, 马逊, 李明, 等. 基于动态阻抗匹配控制下的光伏冷库性能研究[J]. 太阳能学报, 2021: 1-9.
[17] HE T B, KARIMI I A, JU Y L. Review on the design and optimization of natural gas liquefaction processes for onshore and offshore applications[J]. Chemical Engineering Research & Design, 2018, 132: 89-114.
[18] HE T B, CHONG Z R, ZHENG J J, et al. LNG cold energy utilization: Prospects and challenges[J]. Energy, 2019, 170: 557-568.
[19] 郝广宇. 梯级利用LNG冷能的新型冷热电联供系统及其在冷库中的应用研究[D]. 济南: 山东大学, 2021: 30.
[20] 董建锴, 黄顺, 李硕, 等. LNG冷能用于冷库制冷性能模拟研究[J]. 哈尔滨工业大学学报, 2017, 49(2): 103-108.
[21] 张连乙, 李小玲, 刘乐, 等. LNG冷能在冷冻冷藏库中的应用[J]. 当代化工, 2016, 45(10): 2 360-2 362.
[22] 汪乘红, 陈叔平, 杨发禄, 等. 基于LNG接收站冷量的冷库系统设计及经济分析[J]. 低温与超导, 2018, 46(10): 19-24.
[23] LI S F, LIU Z H, WANG X J. A comprehensive review on positive cold energy storage technologies and applications in air conditioning with phase change materials[J]. Applied Energy, 2019, 255: 113667.
[24] ZHAO Y, ZHANG X L, XU X F, et al. Research progress of phase change cold storage materials used in cold chain transportation and their different cold storage packaging structures[J]. Journal of Molecular Liquids, 2020, 319: 114360.
[25] 孙锦涛, 谢晶. 相变蓄冷材料及其在冷库中应用的研究进展[J]. 食品与机械, 2021, 37(7): 227-232.
[26] 黄雪, 崔英德, 尹国强, 等. 相变蓄冷材料研究进展[J]. 化工新型材料, 2020, 48(1): 19-22, 30.
[27] XU X F, ZHANG X L, LIU S. Experimental study on cold storage box with nanocomposite phase change material and vacuum insulation panel[J]. International Journal of Energy Research, 2018, 42(14): 4 429-4 438.
[28] XU X F, ZHANG X L, ZHOU S X, et al. Experimental and application study of Na2SO4·10H2O with additives for cold storage[J]. Journal of Thermal Analysis and Calorimetry, 2019, 136(2): 505-512.
[29] XIA M Z, YUAN Y P, ZHAO X D, et al. Cold storage condensation heat recovery system with a novel composite phase change material[J]. Applied Energy, 2016, 175: 259-268.
[30] RAJAN A B K, ANANDAN S S. Performance analysis of cold storage system with nanofiller phase change material[J/OL]. Biomass Conversion and Biorefinery, 2021. [2022-02-21]. https://doi.org/10.1007/s13399-021-01648-x.
[31] DE FALCO M, SALVATORI M, ZACCAGNINI A. Experimental investigation of a multi-kWh cold storage device based on phase change materials[J]. Journal of Energy Storage, 2021, 41: 102883.
[32] LU S L, LIANG B, LI X H, et al. Performance analysis of PCM ceiling coupling with earth-air heat exchanger for building cooling[J]. Materials, 2020, 13(13): 2 890.
[33] BORRI E, TAFONE A, ROMAGNOLI A, et al. A review on liquid air energy storage: History, state of the art and recent developments[J]. Renewable & Sustainable Energy Reviews, 2021, 137: 110572.
[34] DAMAK C, LEDUCQ D, HONG MINH H, et al. Liquid air energy storage (LAES) as a large-scale storage technology for renewable energy integration: A review of investigation studies and near perspectives of LAES[J]. International Journal of Refrigeration, 2020, 110: 208-218.
[35] CHEN J X, AN B L, YANG L W, et al. Construction and optimization of the cold storage process based on phase change materials used for liquid air energy storage system[J]. Journal of Energy Storage, 2021, 41: 102873.
[36] SHE X H, ZHANG T T, CONG L, et al. Flexible integration of liquid air energy storage with liquefied natural gas regasification for power generation enhancement[J]. Applied Energy, 2019, 251: 113355.
[37] 白文刚, 张纯, 张磊, 等. 一种联合ORC的新型液态空气储能系统热力特性[J]. 储能科学与技术, 2019, 8(5): 880-885.
[38] ALVA G, LIN Y X, FANG G Y. An overview of thermal energy storage systems[J]. Energy, 2018, 144: 341-378.
[39] TIWARI V K, KUMAR A, KUMAR A. Enhancing ice slurry generation by using inclined cavity for subzero cold thermal energy storage: Simulation, experiment and performance analysis[J]. Energy, 2019, 183: 398-414.
[40] KUMAR A, YADAV S K, MAHATO A, et al. On-demand intermittent ice slurry generation for subzero cold thermal energy storage: Numerical simulation and performance analysis[J]. Applied Thermal Engineering, 2019, 161: 114081.
[41] ZHANG C, YANG L, LIN W, et al. Experimental investigation and life-cycle cost analysis of a cold storage enhanced vacuum cooling system using ice slurry[J]. Sustainable Energy Technologies and Assessments, 2021, 45: 101074.
[42] 田甜, 李福良, 张雯, 等. 冷风机不同布置位置对冷库气流组织影响的模拟及实验研究[J]. 冷藏技术, 2019, 42(1): 18-23.
[43] 李艺哲, 谢晶. 大型冷库内温度场的数值模拟与优化[J]. 食品与机械, 2017, 33(6): 139-142, 179.
[44] 曾晰. 火龙果堆码方式对冷藏库内气体流场分布的影响[J]. 农技服务, 2019, 36(1): 37-40, 42.
[45] 刘康佳, 刘广海, 唐海洋, 等. 风机送风和纤维织物风管送风的研究和比较[J]. 制冷与空调, 2019, 19(2): 19-23.
[46] 李爽, 李大鹏, 周丹. 布袋送风系统在冷库中应用研究[J]. 制冷与空调(四川), 2017, 31(1): 34-38.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.