Microwave freeze-drying is a rapid dehydration technique that can be applied to certain foods, particularly to seafoods, and fruits and vegetables. MFD involves much less drying time and energy consumption than conventional freeze-drying methods, and also improves product quality. The article presents the principles of microwave freeze-drying, the research progress of heat and mass transfer mathematical simulation at home and abroad, the detection technology online, and the dielectric properties of materials taken into account in the drying process simulation. After analyzing the problems, the trend of numerical simulation of freeze-drying is predicted.

Publication Date


First Page


Last Page





[1] 李艳聪, 李书环. 真空冷冻干燥技术及其在食品加工中的应用[J].天津农学院学报, 2003, 10(1): 42~45.
[2] 段续, 张慜, 朱文学.海参冻干—微波联合干燥技术研究[J].包装与食品机械,2009,27(5): 36~41.
[3] Ratti C. Hot air and freeze-drying of high-value foods: a review[J]. Journal of Food Engineering, 2001, 49(4): 311~319.
[4] Mujumdar A S. Guide to industrial drying[M]. Mumbai: Colour Publications Pvt.Ltd,2004:143~169.
[5] 钱革兰,张琦,崔政伟,等.真空微波和冷冻干燥组合降低胡萝卜片的干燥能耗[J].农业工程学报,2011, 27(6):387~392.
[6] Peltre R P, Arsen H B, Ma Y H. Applications of microwave heating to freeze drying: perspective[J].AIChE Symposium Series, 1975,73(163): 131~133.
[7] Wang Zhao-hui, Shi Ming-heng. Effects of sublimation condensation region on heat and mass transfer during microwave freeze drying[J]. Journal of Heat Transfer, Transactions ASME, 1998(8): 654~660.
[8] Zhang Min, Tang Jian, Mujumdar A S, et al. Trends in microwave-related drying of fruits and vegetables[J]. Trends in Food Science & Technology, 2006, 17(10): 524~534.
[9] Vadivambal R, Jayas D. Non-uniform temperature distribution during microwave heating of food materials: a review[J]. Food and Bioprocess Technology, 2010, 3(2):161~171.
[10] Nijhuis H H, Torringa H M, Muresan S, et al. Approaches to improving the quality of dried fruit and vegetables[J]. Trends in Food Science & Technology, 1998, 9(1): 13~20.
[11] Clark D E, Sutton W H. Microwave processing of materials[J]. Annual Review of Materials Science, 1996(26): 299~331.
[12] Sebera V, Nasswettrova A, Nikl K. Finite element analysis of mode stirrer impact on electric field uniformity in a microwave applicator [J]. Drying Technology, 2012, 30(13): 1 388~1 396.
[13] Wang Shun-min, Hu Zhi-chao, Han Yong-bin, et al. Effects of magnetron arrangement and power combination of microwave on drying uniformity of carrot [J]. Drying Technology, 2013, 31(11): 1 206~1 211.
[14] 王海鸥,胡志超,屠康,等.微波施加方式对微波冷冻干燥均匀性的影响试验[J].农业机械学报, 2011, 42(5):131~135.
[15] Cohen J S, Yang T C S. Progress infood dehydration[J]. Trends in Food Science &Technology,1995, 6(1):20~25.
[16] 施明恒,祝涛,曹康敏,等.微波冷冻干燥过程中光纤测温技术的研究[J].上海交通大学学报,1999,33(8):1 039~1 042.
[17] King C J. Freeze drying of food [M].Cleveland: Chemical Rubber Co, 1971:176~233.
[18] Sheng T R,Peck R E.Rates for freeze-drying[J].AICHE Symp Sek,1975,73(163):124~130.
[19] Litchfield R J,Liapis A I.An adsorption-sublimation model for freeze dryer[J].Chemical Engineering Science,1979,34(9):1 085~1 090.
[20] Copson D A. Microwave heating in freeze drying electronic ovens and other application [M].Avi Publishing Co, Westport, CT,1962.
[21] Ma Y H, Peltre P. Freeze dehydration by microwave energy.Part I. Theoretical Investigation [J]. AIChE Journal,1975,21(2): 335~344.
[22] Ang T k, Ford J D, Pei DCT. Microwave freeze-drying of food: a theoretical investigation[J]. International Journal of Heat and Mass Transfer,1977,20(5):517~526.
[23] 施明恒,王朝辉.非饱和多孔介质微波冷冻干燥升华—冷凝理论[J].东南大学学报,1995,25(4):92~98.
[24] 赵言冰.微波冷冻干燥过程传热传质的数值模拟[D].南京:东南大学,2004.
[25] 吴宏伟,陶智,陈国华,等.具有电介质核圆柱多孔介质微波冷冻干燥过程的双升华界面模型[J].化工学报,2004,55(6):869~875.
[26] 王维,潘艳秋,赵明举,等.介电材料辅助的微波冷冻干燥的实验研究[J].高校化学工程学报,2010,24(6):923~928.
[27] 杨俊红,肖恒,杨东旺,等.构建微波冷冻干燥模型扩散系数的一种新方法[C]//第十届全国干燥会议集.[出版地不详]:[出版者不详],2004:528~535.
[28] 肖恒.基于毛细管低压气体传质理论的微波冷冻干燥研究[D].天津:天津大学,2006.
[29] Nastaj J F, Witkiewicz K, Wilczyńska B. Experimental and simulation studies of primary vacuum freeze-drying process of random solids at microwave heating[J]. International Communications in Heat and Mass Transfer,2008,35(4):430~438.
[30] Witkiewicz K, Nastaj J. Optimalcontrol policy of the microwave primary freeze drying of random solids[J]. Drying Technology,2011,29(2):217~229.
[31] Nastaj J F, Witkiewicz K. Mathematical modeling of the primary and secondary vacuum freeze drying of random solids at microwave heating[J]. International Journal of Heat and Mass Transfer,2009,52(21~22):4 796~4 806.
[32] Jiang Hao, Zhang Min, Mujumdar A S. Microwave freeze-drying characteristics of banana crisps[J]. Drying Technology,2010,28(12):1 377~1 384.
[33] Vega-Mercado H, Marcela M. Advances in dehydration of foods[J]. Journal of Food Engineering, 2001, 49(4): 271~289.
[34] Wang Shao-jin, Tang Ju-ming, R P Cavalieri, et al. Differential heating of insects in dried nuts and fruits associated with radio frequency and microwave treatments[J]. Transactions of the ASAE, 2003, 46(4):1 175~1 182.
[35] Barringer S A, Davis E A, Gordon J, et al. Microwave heating temperature profiles for thin slabs compared to Maxwell and Lambert law predictions[J]. Journal of Food Science,1995,60(5):1 137~1 142.
[36] Datta A K, Prosetya H, Hu W. Mathematical modeling of batch heating of liquids in a microwave cavity[J]. Journal of Microwave Power and Electromagnetic Energy, 1992, 27(1):38~48.
[37] Duan Xu, Zhang Min, Mujumd A S, et al. Microwave freeze drying of sea cucumber (Stichopus japonicus)[J]. Journal of Food Engineering, 2010, 96(4): 491~497.
[38] Kraszewski A W, Nelson S O. Microwave permittivity determination in agricultural products[J]. Journal of Microwave Power and Electromagnetic Energy, 2004, 39(1): 41~52.
[39] Nelson S O, Forbus W J, Lawrence K. Permittivities of fresh fruits and vegetables at 0.2 to 20 GHz[J]. Journal of Microwave Power and Electromagnetic Energy, 1994, 29(2): 81~93.
[40] Liao Xiang-jun, Raghavan G S V, Dai Jian-ming,et al.Dielectric properties of α-D-glucose aqueous solutions at 2 450 MHz[J]. Food Research International, 2003, 36(5): 485~490.
[41] Noboru S,Mao Wei-jie, Yukiko K, et al. A method for developing model food system in microwave heating studies[J]. Journal of Food Engineering, 2005, 66(4): 525~531.
[42] 邓业胜,郭文川,王婧,等.绿豆介电特性的研究[J].农机化研究,2011,33(10):102~106.
[43] 王瑞利,范贵生.干酪介电特性研究进展[J].农产品加工·学刊(下),2013(10):46~47,51.
[44] 冯呈艳,余志,陈玉琼,等.茶鲜叶介电特性的初步研究[J].华中农业大学学报,2014,33(2):111~115.
[45] 段续.海参微波—冻干联合干燥工艺与机理研究[D].无锡:江南大学,2009.
[46] ASTM D2520-90.Test methods for complex permittivity(Dielectric Constant)of solid,electrical insulating materials at microwave frequencies and temperatures to 1 650 ℃[M]. Philadelphia, PA: American Society for Testing Materials, 1990.
[47] Wang Yi-fen, Wig T D, Tang Ju-ming, et al. Dielectric properties of foods relevant to RF and microwave pasteurization and sterilization[J]. Journal of Food Engineering, 2003, 57(3): 257~268.
[48] Sharma G P, Prasad S. Dielectric properties of garlic (Allium sativum L.) at 2 450 MHz as function of temperature and moisture content[J]. Journal of Food Engineering, 2002, 52(4): 343~348.
[49] Wu Hong-wei,Tao Zhi, Chen Guo-hua,et al.Conjugate heat and mass transfer process within porous media with dielectric cores in microwave freeze drying[J]. Chemical Engineering and Science, 2004, 59(14):2 921~2 928.
[50] Tao Zhi, Wu Hong-wei, Chen Guo-hua, et al.Numerical simulation of conjugate heat and mass transfer process within cylindrical porous media with cylindrical dielectric cores in microwave freeze-drying[J]. International Journal of Heat and Mass Transfer, 2005, 48(3~4): 561~572.

Included in

Food Science Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.