In recent years, the carotenoids in nature are widely used in food, medicine, nutrition and health care industries due to the good biological activity and physiological function. And in order to meet the needs of human beings, the more and more studies on the regulation of carotenoid biosynthesis are emerging. In this paper, the effects of light, temperature and elicitor on the biosynthesis of carotenoids are reviewed, which is hoped that the production of carotenoids can be improved by external regulation in the production process.

Publication Date


First Page


Last Page





[1] 孙玉敬, 乔丽萍, 钟烈洲, 等. 类胡萝卜素生物活性的研究进展[J]. 中国食品学报, 2012, 12(1): 160-166.
[2] 李福枝, 刘飞, 曾晓希, 等. 光合细菌(PSB)应用的研究进展[J]. 食品与机械, 2008, 24(1): 152-158.
[3] Tanumihardjo S A. Vitamin A and bone health: the balancing act[J]. Journal of Clinical Densitometry, 2013, 16(4): 414-419.
[4] Rühl R. Non-pro-vitamin A and pro-vitamin A carotenoids in atopy development[J]. International archives of allergy and immunology, 2013, 161(2): 99-115.
[5] Vílchez C, Forján E, Cuaresma M, et al. Marine carotenoids: biological functions and commercial applications[J]. Marine drugs, 2011, 9(3): 319-333.
[6] Carranco J M E, Calvo C M L, Romo F P. Carotenoids and their antioxidant function: a review[J]. Archivos latinoamericanos de nutricion, 2011, 61(3): 233-241.
[7] Tanaka T, Shnimizu M, Moriwaki H. Cancer chemoprevention by carotenoids[J]. Molecules, 2012, 17(3): 3 202-3 242.
[8] 用类胡萝卜素对食品染色[J]. 食品与机械, 1994(2): 31-32.
[9] 牟春琳, 郝晓华, 刘鑫, 等. 类胡萝卜素细胞工厂—杜氏藻养殖研究进展[J]. 海洋科学进展, 2010, 28(4): 554-562.
[10] Nisar Nazia, Li Li, Lu Shan, et al. Carotenoid metabolism in plants[J]. Moleculer Plant, 2015, 8(1): 68-82.
[11] 任永霞, 王里, 郭郁频, 等. 类胡萝卜素概述[J]. 山东农业大学学报: 自然科学版, 2005, 36(3): 485-488.
[12] Delia B, Rodriguez-Amaya. A guide to carotenoid analysis in foods[M]. Washington, D. C: International Life Sciences Institute, 2001: 1.
[13] Zheng Peng, Xia Yong-Liang, Xiao Guo-Hua, et al. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional chinese medicine[J]. Genome Biology, 2011, 12(11): 1-21.
[14] Sheehan Nancy L, van Heeswijk Rolf P G, Foster Brian C, et al. The effect of beta-carotene supplementation on the pharmacokinetics of nelfinavir and its active metabolite M8 in HIV-1-infected patients[J]. Molecules, 2012, 12(1): 688-702.
[15] Schagerl M, Muller B. Acclimation of chlorophyll a and carotenoid levels to different irradiances in four freshwater cyanobacteria[J]. Journal of Plant Physiology, 2006, 163(7): 709-716.
[16] Marova I, Carnecka M, Halienova A, et al. Use of several waste substrates for carotenoid-rich yeast biomass production[J]. Journal of Environmental Management, 2012, 95: S338-S342.
[17] Avendano-Vazquez Aida-Odette, Cordoba Elizabeth, Llamas Ernesto, et al. An uncharacterized apocarotenoid-derived signal generated in zeta-carotene desaturase mutants regulates leaf development and the expression of chloroplast and nuclear genes in Arabidopsis[J]. Plant Cell, 2014, 26(6): 2 524-2 537.
[18] Yen Hong-wei, Yang Ya-chun. The effects of irradiation and microfiltration on the cells growing and total lipids production in the cultivation of Rhodotorula glutinis[J]. Bioresource Technology, 2012, 107: 539-541.
[19] Isaacson T, Ronen G, Zamir D. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of beta-carotene and xanthophylls in plants[J]. Plant Cell, 2002, 14(2): 333-342.
[20] Wei Jia-li, Xu Min, Zhang Da-bing, et al. The role of carotenoid isomerase in maintenance of photosynthetic oxygen evolution in rice plant[J]. Acta Biochimica Et Biophysica Sinica, 2010, 42(7): 457-463.
[21] Rodriguez-Villalon A Gas E, Rodriguez-Concepcion M. Colors in the dark: a model for the regulation of carotenoid biosynthesis in etioplasts[J]. Plant Signal&Behavior, 2009, 4(10): 965-967.
[22] Shrestha Bhushan, Lee Won-Ho, Han Sang-Kuk, et al. Observations on some of the mycelial growth and pigmentation characteristics of Cordyceps militaris isolates[J]. Mycobiology, 2006, 34(2): 83-91.
[23] Kiley P J, Kaplan S. Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides[J]. Microbiological Reviews, 1988, 52(1): 50-69.
[24] Zhou Qin, Zhang Pan-yue, Zhang Guang-ming. Biomass and carotenoid production in photosynthetic bacteria wastewater treatment: Effects of light intensity[J]. Bioresource Technology, 2014, 171: 330-335.
[25] Kim So-Hyun, Liu Kwang-Hyeon, Lee Seok-Young, et al. Effects of light intensity and nitrogen starvation on glycerolipid, glycerophospholipid, and carotenoid composition in Dunaliella tertiolecta culture[J]. PLOS ONE, 2013, 8(9): e72 415.
[26] Raja R, Hemaiswarya S, Rengasamy R. Exploitation of Dunaliella for beta-carotene production[J]. Applied Microbiology and Biotechnology, 2007, 74(3): 517-523.
[27] Ye Zhi-wei, Jiang Jian-guo, Wu Guang-hong. Biosynthesis and regulation of carotenoids in Dunaliella: progresses and prospects[J]. Biotechnology Advances, 2008, 26(4): 352-360.
[28] Zhang Zhi-ping, Zhang Xu, Tan Tian-wei. Lipid and carotenoid production by Rhodotorula glutinis under irradiation/high-temperature and dark/low-temperature cultivation[J]. Bioresource Technology, 2014, 157: 149-153.
[29] Ma Gang, Zhang Lan-cui, Kato Masaya, et al. Effect of blue and red LED light irradiation on beta-cryptoxanthin accumulation in the flavedo of Citrus fruits[J]. Journal of Agricultural and Food Chemistry, 2012, 60(1): 197-201.
[30] Pham Anh Tuan, Aye Aye Thwe, Kim Yeon Bok, et al. Effects of white, blue, and red light-emitting diodes on carotenoid biosynthetic gene expression levels and carotenoid accumulation in sprouts of Tartary Buckwheat (Fagopyrum tataricum Gaertn.)[J]. Journal of Agricultural and Food Chemistry, 2013, 61(50): 12 356-12 361.
[31] Dong Jing-zhou, Lei Can, Zheng XiaoJ, et al. Light wavelengths regulate growth and active components of Cordyceps militaris furit bodies[J]. Journal of Food Biochemistry, 2013, 37(5): 578-584.
[32] Ahmed F, Fanning K, Netzel M, et al. Induced carotenoid accumulation in Dunaliella salina and Tetraselmis suecica by plant hormones and UV-C radiation[J]. Applied Microbiology and Biotechnology, 2015, 99(22): 9 407-9 416.
[33] Fu Wei-qi, Gumundsson , Paglia G, et al. Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution[J]. Applied Microbiology and Biotechnology, 2013, 97(6): 2 395-2 403.
[34] Fu Wei-qi, Paglia G, Magnúsdóttir M, et al. Effects of abiotic stressors on lutein production in the green microalga Dunaliella salina[J]. Microbial Cell Factories, 2014, 13(3): 1-9.
[35] 左亚军. 环境因素和培养条件对类胡萝卜素表达的影响[J]. 上海化工, 2007, 32(2): 22-26.
[36] 古玉环, 陈军. 盐生杜氏藻Dunaliella salina的生物学特性与培养研究[J]. 西北师范大学学报, 1995, 31(4): 52-55.
[37] 裘娟萍, 沈寅初. 红发夫酵母的生物学特性[J]. 工业微生物, 2001, 31(3): 6-8.
[38] 朱明军, 梁世中. 温度和pH值对Phaffia rhodozyma生长和虾青素积累的影响[J]. 食品与发酵工业, 2002, 28(10): 6-9.
[39] 张玲华, 邝哲师, 陈薇, 等. 高活性光合细菌沼泽红假单胞菌培养特性初探[J]. 华南师范大学学报, 2001(4): 37-39.
[40] 顾青, 梁新乐, 励建荣. 光合细菌R1发酵产类胡萝卜素的研究[J]. 食品与发酵工业, 2001, 27(10): 24-28.
[41] 唐玲. 三孢布拉氏霉发酵β-胡萝卜素的研究[D]. 北京: 北京林业大学, 2009: 22-34.
[42] 尹金凤, 王志轩, 吴欣森, 等. 三孢布拉氏霉发酵产β-胡萝卜素的研究进展[J]. 食品科学, 2014, 35(13): 316-325.
[43] 何洋, 刘林德, 赵彦宏, 等. 蛹虫草优化培养研究进展[J]. 鲁东大学学报, 2011, 27(1): 64-70.
[44] Gomez P I, Gonzalez M A. The effect of temperature and irradiance on the growth and carotenogenic capacity of seven strains of Dunaliella salina (Chlorophyta) cultivated under laboratory conditions[J]. Biological Research, 2005, 38(2): 151-162.
[45] Orset Sandra, Young Andrew J. Low-temperature-induced synthesis of alpha-carotene in the microalga Dunaliella salina (Chlorophyta)[J]. Journal of Phycology, 1999, 35(3): 520-527.
[46] Shi Feng, Zhan Wu-bing, Li Yong-fu, et al. Temperature influences beta-carotene production in recombinant Saccharomyces cerevisiae expressing carotenogenic genes from Phaffia rhodozyma[J]. World Journal of Microbiology & Biotechnology, 2014, 30(1): 125-133.
[47] Ducrey Sanpietro Luis M, Kula M R. Studies of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Effect of inhibitors and low temperature[J]. Yeast, 1997, 14(11): 1 007-1 016.
[48] 王丽丽. 诱导子对雨生红球藻虾青素含量的影响及其分子机理的初步研究[D]. 宁波: 宁波大学, 2009.
[49] 张颖鑫, 辛嘉英, 刘书娟, 等. 金属离子对红酵母菌产类胡萝卜素影响的研究[J]. 食品工业科技, 2010, 31(1): 65-70.
[50] Buzzini P, Martini A, Gaetani M, et al. Optimization of carotenoid production by Rhodotorula graminis DBVPG 7021 as a function of trace element concentration by means of response surface analysis[J]. Enzyme and Microbial Technology, 2005, 36(5): 687-692.
[51] Hsu W J, Poling S M, DeBenedict C, et al. Chemical inducers of carotenogenesis[J]. Journal of Agricultural and Food Chemistry, 1975, 23(5): 831-834.
[52] 汪文俊, 宋发军, 孙雅芳. 生化诱导子对红法夫酵母生长和类胡萝卜素合成的影响[J]. 中南民族大学学报: 自然科学版, 2008, 27(2): 14-17.
[53] 韩建荣, 高宇英, 赵文婧. 几种诱导子对青霉 PT95菌株固态发酵产生类胡萝卜素的影响[J]. 应用与环境生物学报, 2005, 11(2): 208-210.
[54] 叶辉, 王兆慧, 陈佩林, 等. 微生物诱导子对诺卡氏菌属No5205 菌株发酵的影响[J]. 生物技术, 2004, 14(6): 57-58.
[55] Saini R K, Prashanth K V Harish, Shetty N P, et al. Elicitors, SA and MJ enhance carotenoids and tocopherol biosynthesis and expression of antioxidant related genes in Moringa oleifera Lam. leaves[J]. Acta Physiologic Plantarum, 2014, 36(10): 2 695-2 704.
[56] 齐凤慧, 詹亚光, 景天忠. 诱导子对植物细胞培养中次生代谢物的调控机制[J]. 天然产物研究与开发, 2008(20): 568-573.
[57] 张坤生, 连喜军, 李红. 红酵母高产β-胡萝卜素营养因子的选择[J]. 食品工业科技, 2004, 25(7): 60-62.
[58] Pirastru Laura, Darwish Mohamed, Chu Fong Lam, et al. Carotenoid production and change of photosynthetic functions in Scenedesmus sp exposed to nitrogen limitation and acetate treatment[J]. Journal of Applied Phycology, 2012, 24(1): 117-124.
[59] Saha Sushanta Kumar, Moane Siobhan, Murray Patrick. Effect of macro- and micro-nutrient limitation on superoxide dismutase activities and carotenoid levels in microalga Dunaliella salina CCAP 19/18[J]. Biorource Technology, 2013, 147: 23-28.
[60] Lamers Packo P, Janssen Marcel, De Vos Ric C H, et al. Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga[J]. Journal of Biotechnology, 2012, 162(1): 21-27.
[61] Farhat Nejia, Rabhi Mokded, Falleh Hanen, et al. Optimization of salt concentrations for a higher carotenoid production in Dunaliella salina (chlorophyceae)[J]. Journal of Phycology, 2011, 47(5): 1 072-1 077.
[62] Liu Wen-hua, Ming Yao, Li Ping, et al. Inhibitory effects of hypo-osmotic stress on extracellular carbonic anhydrase and photosynthetic efficiency of green alga Dunaliella salina possibly through reactive oxygen species formation[J]. Plant Physiology and Biochemistry, 2012, 54: 43-48.
[63] Hagi Tatsuro, Kobayashi Miho, Nomura Masaru. Aerobic condition increases carotenoid production associated with oxidative stress tolerance in Enterococcus gilvus[J]. FEMS Microbiology Letters, 2014, 350(2): 223-230.

Included in

Food Science Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.