•  
  •  
 

Authors

LUO Xiaohu, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan Univers
QI Lijun, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan Univers
FANG Wenmiao, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan Univers
WANG Ren, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan Univers
WANG Li, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan Univers
SHEN Yuxian, Lushan Win Tone Machinery Manufacture Co., Ltd., Pingdingshan, Henan 467300, China
CHEN Zhengxing, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan Univers

Abstract

Aimed at the severe contamination of AFB1 in corn, effect of specific gravity separation on AFB1-contaminated corn has been investigated. In this study, air volume, longitudinal gradient and amplitude have a significant influence on separation results. With air volume 6 000 m3/h, longitudinal gradient 7°, amplitude 15 mm, different levels of contaminated corn were separated with specific gravity. AFB1 concentrations in obtained heavy corn were decreased by 21.2% and 38.4% respectively compared with the materials. The ratio of light corn and broken percentage of corn was moderate. As the specific gravity equipment is very significant in grain production, using specific gravity method to decrease AFB1 in corn is practical and promising.

Publication Date

6-28-2016

First Page

13

Last Page

18

DOI

10.13652/j.issn.1003-5788.2016.06.004

References

[1] 冯靓, 蔡增轩, 谭莹, 等. HPLC同时测定食品中黄曲霉毒素B1、B2、G1、G2[J]. 中国卫生检验杂志, 2007, 17(3): 511-513.
[2] International Agency for Research on Cancer (IARC). Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins[M]. Monographs on the Evaluation of Carcinogenic Risks to Humans. Lyon: IARC Press, 1993: 163-242.
[3] 余以刚, 邱杨, 吴晖, 等. 几种传统食品中黄曲霉毒素B1的检测与安全评价[J]. 食品与机械, 2007, 24(4): 110-111.
[4] ZHANG Chao, MA Yue, ZHAO Xiao-yue, et al. Effect of drying treatments on anthocyanin, fumonisin B1, aflatoxin B1 content of anthocyanin extract from purple corn (Zea may L.) in north China[J]. Advanced Materials and Structures, 2011, 335-336(10):1 396-1 401.
[5] 高秀芬, 荫士安, 张宏元, 等. 中国部分地区玉米中4种黄曲霉毒素污染调查[J]. 卫生研究, 2011(1): 46-49.
[6] 中华人民共和国卫生部. GB 2761—2011 食品安全国家标准食品中真菌毒素限量[S]. 北京: 中国标准出版社, 2011.
[7] 陶芳, 程备久. 玉米抗黄曲霉毒素污染的研究进展[J]. 中国粮油学报, 2012, 27(5): 112-117.
[8] 李瑞芳, 韩北忠, 陈晶瑜, 等. 黄曲霉生长预测模型的建立及其在玉米储藏中的应用[J]. 中国粮油学报, 2008, 23(3): 144-147.
[9] 曹铭, 樊明涛. 黄曲霉毒素脱除技术研究进展[J]. 食品与机械, 2015, 31(1): 260-264.
[10] 蒋敏, 倪芳妍, 李志强, 等. 油脂加工过程中黄曲霉毒素B1污染情况的研究[J]. 粮食与食品工业, 2014, 21(5): 26-28.
[11] 齐德生, 刘凡, 于炎湖, 等. 蒙脱石对黄曲霉毒素B1的脱毒研究[J]. 中国粮油学报, 2004, 19(6): 71-75.
[12] 朱佳廷, 冯敏, 严建民, 等. 辐照对稻米中黄曲霉毒素的降解效果[J]. 江苏农业科学, 2012, 40(12): 324-326.
[13] LUO Xiao-hu, WANG Ren, WANG Li, et al. Detoxification of aflatoxin in corn flour by ozone[J]. Journal of the Science of Food and Agriculture, 2014, 94(11): 2 253-2 258.
[14] 刘畅. 益生菌对黄曲霉毒素B1吸附作用的研究[D]. 北京: 中国农业科学院, 2010: 53-54.
[15] 卢大新. 比重分选机对收获期受雨害小麦的精选分级效果[J]. 西北农业学报, 2001, 10(3): 87-89.
[16] 李毅念, 卢大新, 丁为民, 等. 萌动小麦重力分选效果的试验[J]. 农业机械学报, 2006, 37(7): 78-82.
[17] 阴峰伟. 粮食比重去石机和种子重力分选机玉米提胚试验研究[D]. 郑州: 河南工业大学, 2014: 7.
[18] 李方, 顾熟琴, 卢大新, 等. 组合分选方法对减除小麦中DON毒素的效果探究[J]. 中国粮油学报, 2014, 29(12):12-15, 36.
[19] 朱玉昌. 脱氧雪腐镰刀菌烯醇(DON)污染小麦重力分选研究及设备研制[D]. 北京: 中国农业科学院, 2014.
[20] 汪裕安, 吕秋瑾. 重力式清选机分选规律的初步探索[J]. 农业机械学报, 1983(3): 57-69.
[21] 邓学法, 董继红, 李忠建, 等. 玉米霉变的危害及物理脱毒[J]. 江西畜牧兽医杂志, 2004(5): 13.
[22] 邓俊才, 刘江, 雷婷, 等. 收获期籽粒田间霉变对大豆产量和品质的影响[J]. 中国油料作物学报, 2015, 37(1): 77-82.
[23] 杨敦科, 刘兴昌. 关中灌区小麦赤霉病发生程度与产量损失的关系[J]. 陕西农业科学, 1991, 6(6): 30-31.
[24] 崔贵金. 赤霉病麦粒光电分选技术研究[D]. 郑州: 河南工业大学, 2013: 7-10.
[25] 张黎骅, 张文, 吕珍珍, 等. 响应面法优化酒糟微波间歇干燥工艺[J]. 农业工程学报, 2011, 27(3): 369-374.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.