Article Title
Optimization of microwave assisted extraction process of lignans in Cinnamomum camphora leaf
Abstract
An efficient microwave assisted extraction procedure for the lignans from the leaves of Cinnamomum camphora was investigated and optimized. Response surface methodology (RSM) based on a three-level four-factor Box Behnken Design (BBD) was employed to optimize the extraction conditions. The best extraction conditions were as follows: microwave time 5 min, ratio of material to ethanol 1∶26 (g/mL), ethanol concentration 80%, microwave temperature 60 ℃. Under the optimization conditions, the experimental yield of lignans was 42.69%, which was well matched with the predictive yield of 42.95%.
Publication Date
6-28-2016
First Page
193
Last Page
197
DOI
10.13652/j.issn.1003-5788.2016.06.046
Recommended Citation
Haixu, ZHOU; Zhonghai, LI; Ghui, ZHAN; and Yongjiao, LAI
(2016)
"Optimization of microwave assisted extraction process of lignans in Cinnamomum camphora leaf,"
Food and Machinery: Vol. 32:
Iss.
6, Article 46.
DOI: 10.13652/j.issn.1003-5788.2016.06.046
Available at:
https://www.ifoodmm.cn/journal/vol32/iss6/46
References
[1] RICHA S, TALHA J. Cinnamomum camphora (kapur): review[J]. Pharmacognosy, 2012 , 4(28): 1-5.
[2] HSIEH T J, CHERT C H, LO W L, et al. Lignans from the stem of Cinnamomum camphora[J]. Natural Product Communications, 2006, 1(1): 21-25.
[3] TAKAOKA D, HIROI M, IMOOKA M. Studies of lignoids in Lauraceae Ⅲ: A new lignan from the heart wood of Cinnamomum camphora Sieb [J]. Bulletin of the chemical Society of Japan, 1977, 50(10): 2 821-2 822.
[4] 廖矛川, 杨芳云, 沙光普, 等. 樟树叶化学成分研究[J]. 中国民族大学学报: 自然科学版, 2012, 31(3): 52-55.
[5] 王智慧, 凌铁军, 张梁, 等. 樟树叶化学成分的研究[J]. 天然产物研究与开发, 2014, 26(6): 860-863.
[6] TSOPMO A, AWAH F M, KUETE V. Medicinal plant research in africa [M]. Holand: Academic Press, Elsevier, 2013, 435-478.
[7] CHEN Yu-chen, LIAW C, CHENG Yuan-bin, et al. Anti-liver fibrotic lignans from the fruits of Schisandra arisanensis and Schisandra sphenanthera [J]. Bioorganic and Medicinal Chemistry Letters, 2013, 23: 880-885.
[8] JULIEN S, JACQUES A, PHILIPPE G, et al. Biological activities of lignans and neolignans on the aphid Myzus persicae(Sulzer) [J]. Arthropod Plant Interactions, 2013, 7: 225-233.
[9] KIM K, KIM H, CHOI S, et al. Bioactive lignans from the Rhizomes of Acorus gramineus [J]. Journal of natural products, 2011, 74: 2 187-2 192.
[10] FILLEUR F, POUGET C P, ALLAIS D, et al. Lignans and Neolignans from Myristica Argentea Warb [J]. Nat. Prod. Lett, 2002, 16(1): 1-7.
[11] 高春花, 钟海雁, 孙昌波. 五味子木脂素提取分离和含量测定研究进展[J]. 食品与机械, 2007, 23(1): 151-155.
[12] 夏云麒. 樟叶木脂素的提取及活性研究[D]. 福建: 福建农林大学, 2011: 27-29.
[13] COMIN L M, TEMELLI F, SALDANA M A. Supercritical CO2 extraction of flax lignans [J]. J. Am. Oil Chem. Soc., 2011, 88: 707-715.
[14] 揭广川, 陈红杰, 李必金. 微波辅助复合酶法提取草菇中的风味物质[J]. 食品与机械, 2015, 31(1): 164-167.
[15] 陈韵, 石展望, 黄晓敏. 超声波辅助提取大豆总木脂素及其含量分析[J]. 大豆科学, 2010, 29(1): 168-171.
[16] TAMRESHIA S, MALLIKARJUNAN P, ZHOU Ke-quan, et al. Microwave-assisted extraction of phenolic antioxidant compounds from peanut shins [J]. Food Chemistry, 2010, 120(4): 1 185-1 192.
[17] 谷政伟, 胡铁, 贾媛, 等. 微波辅助提取缬草叶总黄酮工艺研究[J]. 中药材, 2014, 37(1): 2 092-2 095.
[18] 张玉香, 屈慧鸽, 杨润亚, 等. 响应面法优化蓝莓叶黄酮的微波提取工艺[J]. 食品科学, 2010, 31(16): 33-37.
[19] 刘军海, 任惠兰, 官波, 等. 响应面分析法优化黄芪多糖提取工艺[J]. 食品工业, 2008(3): 11-14.
[20] 李梁, 吉建邦, 康效宁, 等. 槟榔花水浸物有效成分提取工艺优化[J]. 食品与机械, 2014, 30(1): 214-219.
[21] MURALIDHAR R V, CHIRUMAMILA R R, MARCHANT R, et al. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources [J]. Biochem. Eng. J., 2001(9): 17-23.
[22] 宋丽军, 候旭杰, 李雅雯, 等. 核桃青皮中多酚的超高压提取工艺优化[J]. 食品与机械, 2015, 31(4): 178-182.