Abstract
Near infrared spectroscopy data from 135 apple samples of different storage periods were determined, the charactar of them was extracted and analyzed using principal components analysis. Therefor an ANN model for detection of apple chewiness was established. Our results showed that the preprocessing of spectrum scattering was the weighted multiple scatter correction(WMSC) and mathematics processing was “2441”. The structure of the artificial neural network mode was 3—16—1, established after extracting 3 principle component as the characteristic variables of the original information. The decision coefficient of our model on validation is 0.992 4, and the root mean square error is 0.000 108 2. Our results confirmed that the near infrared spectroscopy technology can use to detect the chewiness of apple rapidly, without forecast destructive.
Publication Date
6-28-2016
First Page
37
Last Page
40
DOI
10.13652/j.issn.1003-5788.2016.06.009
Recommended Citation
Xiangyuan, ZENG; Wuqi, ZHAO; Yaoyao, QIAO; Yiran, YIN; Yali, PEI; Yaoyao, HUO; and Yurong, GUO
(2016)
"Detecting chewiness of apple by near infrared spectroscopy technology combined artificial neural network,"
Food and Machinery: Vol. 32:
Iss.
6, Article 9.
DOI: 10.13652/j.issn.1003-5788.2016.06.009
Available at:
https://www.ifoodmm.cn/journal/vol32/iss6/9
References
[1] 王轩. 不同产地红富士苹果品质评价及加工适宜性研究[D]. 北京: 中国农业科学院, 2013: 1-3.
[2] 杨玲, 肖龙, 王强, 等. 质地多面分析(TPA)法测定苹果果肉质地特性[J]. 果树学报, 2014, 31(5): 977-985.
[3] 张鹏, 李江阔, 陈绍慧. 苹果质地的近红外光谱无损检测模型研究[J]. 食品工业科技, 2015, 36(4): 79-83.
[4] 李桂峰, 赵国建, 王向东, 等. 苹果质地品质近红外无损检测和指纹分析[J]. 农业工程学报, 2008, 24(6): 169-173.
[5] Wedding B B, Wright C, Graul S, et al. Effects of seasonal variability on FT-NIR prediction of dry matter content for whole Hass avocado fruit[J]. Postharvest Biology and Technology, 2013, 75(1): 9-16.
[6] 安泉鑫, 陈莉, 庞林江, 等. 近红外光谱技术在食品中的应用进展[J]. 食品与机械, 2012, 28(5): 239-242.
[7] 张静, 程玉来, 重滕和明. 利用近红外透射光谱技术测定苹果糖度的研究[J]. 食品科技, 2007(2): 245-247.
[8] 李桂峰, 赵国建, 刘兴华, 等. 苹果硬度的傅里叶变换近红外光谱无损检测[J]. 农业机械学报, 2009, 40(1): 120-123.
[9] Lammertyn J, Nicolai B I, Ooms K, et al. Non-destructive measurement of acidity, soluble solids, and firmness of Jonagold apples using NIR-spectroscopy[J]. Transactions of the ASAE, 1998, 41(4): 1 089-1 094.
[10] 孙炳新, 匡立学, 徐方旭, 等. 苹果脆度的近红外无损检测[J]. 食品与发酵工业, 2013, 39(5): 185-189.
[11] 陆辉山, 陈鹏强, 闫宏伟, 等. 基于近红外光谱漫透射技术的苹果可溶性固形物含量在线检测[J]. 食品与机械, 2015, 31(3): 40-42.
[12] 章德宾, 徐家鹏, 许建军, 等. 基于监测数据和BP神经网络的食品安全预警模型[J]. 农业工程学报, 2010, 26(1): 221-226.
[13] 姜松, 王海鸥. TPA质构分析及测试条件对苹果TPA质构分析的影响[J]. 食品科学, 2004, 25(12): 68-71.
[14] 张佰清, 关悦乐. 基于神经网络算法用质构特性指标预测寒富苹果贮藏品质[J]. 食品科技, 2012, 37(6): 290-293, 298.
[15] 赵丽丽. 果品类内部品质近红外无损检测技术的研究[D]. 北京: 中国农业大学, 2003: 33-38.
[16] 赵武奇, 石珂心, 谷月, 等. 近红外光谱技术检测石榴汁酸度的研究[J]. 食品工业科技, 2014, 35(16): 68-70, 75.
[17] 夏柏杨, 任芊. 近红外光谱分析技术的一些数据处理方法的讨论[J]. 光谱试验室, 2005, 22(3): 629-634.