•  
  •  
 

Abstract

In recent years, the amphiphilic polysaccharide as the carrier of lipophilic components has become a research hotspot in food science. In the aqueous system, the soluble amphiphilic polysaccharide can self-aggregate to form the shell-core structure with the hydrophobic moieties forming the core of the micelle and the hydrophilic moieties forming the corona. The structural characteristic is the basis of the function of the micelle. Therefore, it is very important for practical application to maintain or stabilize the structure of the micelle. In this review, it describes the amphiphilic polysaccharide micelle stability, inter-molecular force, influence factors (structural factors and environmental factors) and unstable performance of amphiphilic polysaccharide micelles. Meanwhile, it points out the direction of future research.

Publication Date

7-28-2016

First Page

207

Last Page

213

DOI

10.13652/j.issn.1003-5788.2016.07.046

References

[1] LEE H, LEE K, PARK T G. Hyaluronic acid-paclitaxel conjugate micelles: synthesis, characterization, and antitumor activity[J]. Bioconjugate Chemistry, 2008, 19(6): 1 319-1 325.
[2] KOKUBUN S, RATCLIFFE I, WILLIAMS P A. Synthesis, characterization and self-assembly of biosurfactants based on hydrophobically modified inulins[J]. Biomacromolecules, 2013, 14(8): 2 830-2 836.
[3] OWEN S C, CHAN D P Y, SHOICHET M S. Polymeric micelle stability[J]. Nano Today, 2012, 7(1): 53-65.
[4] GONALVES C, MATYINS J A, GAMA F M. Self-assembled nanoparticles of dextrin substituted with hexadecanethiol[J]. Biomacromolecules, 2007, 8(2): 392-398.
[5] GARG S M, VAKILI M R, LAVASANIFAR A. Polymeric micelles based on poly(ethylene oxide) and α-carbon substituted poly(-caprolactone): An in vitro study on the effect of core forming block on polymeric micellar stability, biocompatibility, and immunogenicity[J]. Colloids & Surfaces B: Biointerfaces, 2015, 132: 161-170.
[6] AKIYOSHI K, DEGUCHI S, MORIGUCHI N, et al. Self-aggregates of hydrophobized polysaccharides in water. Formation and characteristics of nanoparticles[J]. Macromolecules, 1993, 26(12): 3 062-3 068.
[7] AKIYOSHI K, DEGUCHI S, TAJIMA H, et al. Microscopic structure and thermoresponsiveness of a hydrogel nanoparticle by self-assembly of a hydrophobized polysaccharide[J]. Macromolecules, 1997, 30(30): 857-861.
[8] PAN Zheng, GAO Yu-ling, HENG Lin-seng, et al. Amphiphilic N-(2,3-dihydroxypropyl)-chitosan-cholic acid micelles for paclitaxel delivery[J]. Carbohydrate Polymers, 2013, 94(1): 394-399.
[9] GU Feng, LI Bing-zheng, XIA Hui-ping, et al. Preparation of starch nanospheres through hydrophobic modification followed by initial water dialysis[J]. Carbohydrate Polymers, 2015, 115: 605-612.
[10] YAO Xue-mei, CHEN Li, CHEN Xiao-fei, et al. Intercellular pH-responsive histidine modified dextran-g-cholesterol micelle for anticancer drug delivery[J]. Colloids & Surfaces B: Biointerfaces, 2014, 121(9): 36-43.
[11] FERREIRA S A, COUTINHO P J G, GAMA F M. Self-assembled nanogel made of mannan: Synthesis and characterization[J]. Langmuir, 2010, 26(13): 11 413-11 420.
[12] WANG Jing-yun, CUI Shuang, BAO Yong-ming, et al. Tocopheryl pullulan-based self assembling nanomicelles for anti-cancer drug delivery[J]. Materials Science & Engineering C, 2014, 43: 614-621.
[13] LIU Yan-hua, SUN Jin, CAO Wen, et al. Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery[J]. International Journal of Pharmaceutics, 2011, 421(1): 160-169.
[14] BIAN Feng-ling, JIA Li-xia, YU Wei, et al. Self-assembled micelles of N-phthaloylchitosan-g-polyvinylpyrrolidone for drug delivery[J]. Carbohydrate Polymers, 2009, 76(3): 454-459.
[15] LIU Qing-yao, YANG Xiang-liang, XU Hui-bi, et al. Novel nanomicelles originating from hydroxyethyl starch-g-polylactide and their release behavior of docetaxel modulated by the PLA chain length[J]. European Polymer Journal, 2013, 49(11): 3 522-3 529.
[16] EENSCHOOTEN C, VACCARO A, DELIE F, et al. Novel self-associative and multiphasic nanostructured soft carriers based on amphiphilic hyaluronic acid derivatives[J]. Carbohydrate Polymers, 2012, 87(1): 444-451.
[17] NYRKOVA I A, SEMENOV A N. Multimerization: closed or open association scenario?[J]. European Physical Journal E, 2005, 17(3): 327-337.
[18] DING Jian-xun, CHEN Ling-hui, XIAO Chun-sheng, et al. Noncovalent interaction-assisted polymeric micelles for controlled drug delivery[J]. Chemical Communications, 2014, 50(77): 11 274-11 290.
[19] GONALVES C, GAMA F M. Characterization of the self-assembly process of hydrophobically modified dextrin[J]. European Polymer Journal, 2008, 44(11): 3 529-3 534.
[20] PANG Xin, LU Zhen, DU Hong-liang, et al. Hyaluronic acid-quercetin conjugate micelles: synthesis, characterization, in vitro and in vivo evaluation[J]. Colloids and Surfaces B: Biointerfaces, 2014, 123: 778-786.
[21] ZHU Jie, LI Lin, CHEN Ling, et al. Nano-structure of octenyl succinic anhydride modified starch micelle[J]. Food Hydrocolloids, 2013, 32(1): 1-8.
[22] HARPAZ Y, GERSTEIN M, CHOTHIA C. Volume changes on protein folding[J]. Structure, 1994, 2(7): 641-649.
[23] LI Wen-jian, PENG Hai-long, NING Fang-jian, et al. Amphiphilic chitosan derivative-based core-shell micelles: synthesis, characterisation and properties for sustained release of Vitamin D3[J]. Food Chemistry, 2014, 152(2): 307-315.
[24] ROLL A, O'mullane J, GODDARD P, et al. New macromolecular carriers for drugs: I. Preparation and characterization of poly(oxyethylene-b-isoprene-b-oxyethylene) block copolymer aggregates[J]. Journal of Applied Polymer Science, 1992, 44(7): 1 195-1 203.
[25] LI Jing, HUO Mei-rong , WANG Jing, et al. Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel[J]. Biomaterials, 2012, 33(7): 2 310-2 320.
[26] WEI Yu-ping, CHENG Fa, HOU Gui-li, et al. Amphiphilic cellulose: Surface activity and aqueous self-assembly into nano-sized polymeric micelles[J]. Reactive and Functional Polymers, 2008, 68(5): 981-989.
[27] LIN Li-huei, CHOU Yi-shiung. Surface activity and emulsification properties of hydrophobically modified dextrins[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 364(1/3): 55-60.
[28] NICHIFOR M, MOCANU G, STANCIU M C. Micelle-like association of polysaccharides with hydrophobic end groups[J]. Carbohydrate Polymers, 2014, 110(38): 209-218.
[29] SONG Yong-bo, ZHANG Ling-zhi, GAN Wei-ping, et al. Self-assembled micelles based on hydrophobically modified quaternized cellulose for drug delivery[J]. Colloids and Surfaces B: Biointerfaces, 2011, 83(2): 313-320.
[30] GUO Yan-zhu, WANG Xiao-hui, SHEN Zu-guang, et al. Preparation of cellulose-graft-poly(-caprolactone) nanomicelles by homogeneous ROP in ionic liquid[J]. Carbohydrate Polymers, 2013, 92(1): 77-83.
[31] QIU Li-peng, LI Zhen, QIOA Ming-xi, et al. Self-assembled pH-responsive hyaluronic acid-g-poly(L-histidine) copolymer micelles for targeted intracellular delivery of doxorubicin[J]. Acta Biomaterialia, 2014, 10(5): 2 024-2 035.
[32] SALLUSTIO S, GALANTINI L, GENTE G, et al. Hydrophobically modified pullulans: characterization and physicochemical properties[J]. Journal of Physical Chemistry B, 2004, 108(49): 18 876-18 883.
[33] JUNG S W, JEONG Y, KIM S H. Characterization of hydrophobized pullulan with various hydrophobicities[J]. International Journal of Pharmaceutics, 2003, 254(2): 109-121.
[34] JEONG Y, NA H S, OH J S, et al. Adriamycin release from self-assembling nanospheres of poly(dl-lactide-co-glycolide)-grafted pullulan[J]. International Journal of Pharmaceutics, 2006, 322(1/2): 154-160.
[35] YANG Wen-zhi, WANG Miao-miao, MA Li-lan, et al. Synthesis and characterization of biotin modified cholesteryl pullulan as a novel anticancer drug carrier[J]. Carbohydrate Polymers, 2014, 99(1): 720-727.
[36] JU Ben-zhi, YAN Dong-mao, ZHANG Shu-fen. Micelles self-assembled from thermoresponsive 2-hydroxy-3-butoxypropyl starches for drug delivery[J]. Carbohydrate Polymers, 2012, 87(2): 1 404-1 409.
[37] YANG Jin-long, GAO Chun-mei, LV Shao-yu, et al. Physicochemical characterization of amphiphilic nanoparticles based on the novel starch-deoxycholic acid conjugates and self-aggregates[J]. Carbohydrate Polymers, 2014, 102(1): 838-845.
[38] LEI Dan-dan, LIU Jia, YE Fa-yin, et al. Synthesis, characterization and aqueous self-assembly of octenylsuccinic corn dextrin ester with high molecular weight[J]. Food Hydrocolloids, 2014, 41(41): 250-256.
[39] GUO Yan-zhu, WANG Xiao-hui, SHU Xuancai, et al. Self-assembly and paclitaxel loading capacity of cellulose-graft-poly(lactide) nanomicelles[J]. Journal of Agricultural and Food Chemistry, 2012, 60(15): 3 900-3 908.
[40] XIONG Xiao-bing, FALAMARZIAN A, GARG S M, et al. Engineering of amphiphilic block copolymers for polymeric micellar drug and gene delivery[J]. Journal of Controlled Release, 2011, 155(2): 248-261.
[41] WU Min-ming, GUO Kai, DONG Hong-wei, et al. In vitro drug release and biological evaluation of biomimetic polymeric micelles self-assembled from amphiphilic deoxycholic acid-phosphorylcholine-chitosan conjugate[J]. Materials Science and Engineering: C, 2014, 45: 162-169.
[42] MEJKALOVA D, NESPOROVA K, HERMANNOVA M, et al. Paclitaxel isomerisation in polymeric micelles based on hydrophobized hyaluronic acid[J]. International Journal of Pharmaceutics, 2014, 466(1/2): 147-155.
[43] MANJU S, SREENIVASAN K. Conjugation of curcumin onto hyaluronic acid enhances its aqueous solubility and stability[J]. Journal of Colloid and Interface Science, 2011, 359(1): 318-325.
[44] LI Jing-lei, SHIN G H, CHEN Xi-guang, et al. Modified curcumin with hyaluronic acid: Combination of pro-drug and nano-micelle strategy to address the curcumin challenge[J]. Food Research International, 2015, 69: 202-208.
[45] LI Jing, YIN Ting-jie, WANG Lei, et al. Biological evaluation of redox-sensitive micelles based on hyaluronic acid-deoxycholic acid conjugates for tumor-specific delivery of paclitaxel[J]. International Journal of Pharmaceutics, 2015, 483(1/2): 38-48.
[46] MANDRACCHIA D, TRIPODO G, LATROFA A, et al. Amphiphilic inulin-d-α-tocopherol succinate (INVITE) bioconjugates for biomedical applications[J]. Carbohydrate Polymers, 2014, 103: 46-54.
[47] WEI Yu-ping, CHENG Fa. Synthesis and aggregates of cellulose-based hydrophobically associating polymer[J]. Carbohydrate Polymers, 2007, 68(4): 734-739.
[48] ARUNKUMAR R, PRASHANTH K V H, BASKARAN V. Promising interaction between nanoencapsulated lutein with low molecular weight chitosan: Characterization and bioavailability of lutein in vitro and in vivo[J]. Food Chemistry, 2013, 141(1): 327-337.
[49] TAN Ying, XU Kun, LI Yang, et al. A robust route to fabricate starch esters vesicles[J]. Chemical Communications, 2010, 46(25): 4 523-4 525.
[50] SEO S, LEE C S, JUNG Y S,et al. Thermo-sensitivity and triggered drug release of polysaccharide nanogels derived from pullulan-g-poly(l-lactide) copolymers[J]. Carbohydrate Polymers, 2012, 87(2): 1 105-1 111.
[51] MA Ya-qin, LIU Jia, YE Fa-yin, et al. Solubilization of β-carotene with oat β-glucan octenylsuccinate micelles and their freeze-thaw, thermal and storage stability[J]. LWT-Food Science and Technology, 2016, 65: 845-851.
[52] SAADAT E, AMINI M, KHOSHAYAND M R, et al. Synthesis and optimization of a novel polymeric micelle based on hyaluronic acid and phospholipids for delivery of paclitaxel, in vitro and in-vivo evaluation[J]. International Journal of Pharmaceutics, 2014, 475(1/2): 163-173.
[53] GAN Quan, WANG Tao, COCHRANCE C, et al. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery[J]. Colloids and Surfaces B: Biointerfaces, 2005, 44(2/3): 65-73.
[54] MORIMOTO N, HIRANO S, TAKAHASHI H, et al. Self-assembled pH-sensitive cholesteryl pullulan nanogel as a protein delivery vehicle[J]. Biomacromolecules, 2012, 14(1): 56-63.
[55] SKAAT H, CHEN R, GRINBERG I, et al. Engineered polymer nanoparticles containing hydrophobic dipeptide for inhibition of amyloid-β fibrillation[J]. Biomacromolecules, 2012, 13(9): 2 662-2 670.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.