Abstract
In order to find optimal conditions for the preparation of cross-linked inulin, the effects of inulin concentration, cross-linking agent dosage, pH, reaction temperature and reaction time on the degree of cross-linking were investigated by single factor experiment. The preparation conditions of the cross-linked inulin were optimized according to central-composite design principles and response surface analysis. The result showed that the concentration of inulin, cross-linking agent dosage, pH and reaction time had significant effects on cross-linking degree of cross-linked inulin. The optimal conditions were the concentration of inulin 4.63%, cross-linking agent dosage 12.04 g/100 g, pH 10.19 and reaction time 3.59 h. Under the optimum conditions, the cross-linking degree of cross-linked inulin was 0.013 7±0.001 2, which was well consistent with the predicted value of 0.014 0. It can be found that the average degree of polymerization of cross-linked inulin increased and it has higher viscosity,larger average particle size, lower solubility and better gel properties compared with inulin, that means cross-linked can well improve the food texture and rheological properties.
Publication Date
7-28-2018
First Page
186
Last Page
193
DOI
10.13652/j.issn.1003-5788.2018.07.039
Recommended Citation
Xiaohan, MA; Xiong, LIU; Jing, DENG; Dan, ZHAO; Junqing, TIAN; and Tiantian, ZHAO
(2018)
"Optimization on preparation of cross-linked inulin by response surface analysis and its physic ochemical properties,"
Food and Machinery: Vol. 34:
Iss.
7, Article 39.
DOI: 10.13652/j.issn.1003-5788.2018.07.039
Available at:
https://www.ifoodmm.cn/journal/vol34/iss7/39
References
[1] 初敏, 齐锡祥. 多糖研究概述[J]. 中药研究与信息, 2003, 2(4): 18-20.
[2] 王月霞, 周佳栋, 曹飞, 等. 盐碱滩涂菊芋菊糖的提取纯化及聚合度分布[J]. 食品科学, 2011, 32(12): 164-168.
[3] CHRISTIAN V S, ALESSIA M, KARL B. Chemical Modification of Inulin, a Valuable Renewable Resource, and Its Industrial Applications[J]. Biomacromolecules, 2001, 2(1): 1-16.
[4] 曾小宇, 罗登林, 刘胜男, 等. 菊糖的研究现状与开发前景[J]. 中国食品添加剂, 2010(4): 222-227.
[5] 黄亮, 肖开庆, 郑菲. 菊糖对小白鼠消化吸收免疫功能及血糖的影响评价[J]. 食品与机械, 2009, 25(1): 90-92.
[6] 谭晓琼, 董全, 丁红梅. 功能保健食品菊糖的研究进展与发展前景[J]. 中国食物与营养, 2007(1): 22-24.
[7] 周文辉. 菊糖及低聚果糖的代谢及生理特性[J]. 广州食品工业科技, 2004, 20(2): 155-157.
[8] 张名涛, 顾宪红, 杨琳. 菊粉的原生素作用研究进展[J]. 动物营养学报, 2003, 15(4): 12-18.
[9] NINESS K R. Inulin andoligofructose: what are they?[J]. Journal of Nutrition, 1999, 29: 1 402S-1 406S.
[10] KIM Y, FAQIH M N, WANG S S. Factors affecting gel formation of inulin[J]. Carbohydrate Polymers, 2001, 46(2): 135-145.
[11] KAUR N. GUPTA A K. Applications of inulin and oligo fructose in health and nutrition[J]. Journal of Biosciences, 2002, 27: 703-714.
[12] 刘宏. 菊粉的功能特性与开发应用[J]. 中国食物与营养, 2010(12): 25-27.
[13] LOPEZ-MOLINA D, NAVARRO-MARTINEZ M D, ROJAS-MELGAREJO F, et al. Molecular properties and prebiotic effect of inulin obtained from artichoke (Cynarascolymus, L.) [J]. Phytochemistry, 2005, 66(12): 1 476-1 484.
[14] 胡娟. 菊芋菊糖的纯化及在植物掼奶油中的应用[D]. 无锡: 江南大学, 2007: 33-35.
[15] 陈光鹏. 菊芋酸奶工艺优化及营养学评价[D]. 郑州: 郑州大学, 2011: 36-43.
[16] RONKART S N, PAQUOT M, DEROANNE C, et al. Development of gelling properties of inulin bymicrofluidization[J]. Food Hydrocolloids, 2010, 24(4): 318-324.
[17] 罗登林, 许威, 袁海丽, 等. 菊粉加工性质的研究[J]. 粮油加工, 2009(9): 142-144.
[18] 方志林. 马铃薯交联淀粉的制备及理化性质的研究[D]. 南京: 南京林业大学, 2009: 9-11.
[19] 肖昱. 变性淀粉湿法生产工艺与影响产品质量和稳定的重要因素探讨[J]. 食品工业科技, 2003(3): 60-62.
[20] 邬应龙, 王瑶. 抗性淀粉的结构及生理功能研究[J]. 中国粮油学报, 2008, 23(3): 63-72.
[21] 张宏志, 马燕弘, 黄开红, 等. 菊芋菊糖的提取、聚合度分布及抗氧化活性的研究[J]. 食品与生物技术学报, 2015, 34(10): 1 069-1 077.
[22] PAULA G, CRISTINA V, PAZ R. Release kinetic in yogurt from gallic acid microparticles with chemically modified inulin[J]. Journal of Food Science, 2015, 80(10): 2 147-2 152.
[23] LI Su-ping, HU Tao, CHEN Ya-li, et al. Cross-linked inulin as a potential plasma expander: Biochemical properties and physiological characterization in a rabbit model[J]. Carbohydrate Polymers, 2010, 82: 1 054-1 060.
[24] KIM M, LEE S J. Caracteristics of crosslinked potatostarch and starch filled linear low-density polyethylene films[J]. Carbohydrate Polymers, 2002, 50: 331-337.
[25] 许威. 菊粉物化特性的研究[D]. 洛阳: 河南科技大学, 2012: 10-12.
[26] 于济洋, 李新华, 王琳, 等. 菊芋全粉凝胶特性的比较研究[J]. 核农学报, 2014, 28(3): 478-484.
[27] SIBGH J, SINGH N, SHARMA T R, et al. Physicochemical, rheological and cookie making properties of corn and potato flours[J]. Food Chemistry, 2003, 83(3): 387-393.
[28] 崔媛, 罗菊香, 崔国星. 马铃薯交联淀粉的制备及交联剂的影响分析[J]. 化学与生物工程, 2011, 28(2): 33-35.
[29] 方志林. 马铃薯交联淀粉的制备及理化性质的研究[D]. 南京: 南京林业大学, 2009: 17.
[30] 季佳佳. 三偏磷酸钠交联玉米淀粉的理化性质测定[D]. 天津: 天津科技大学, 2009: 23-25.
[31] 刘丽君. 脱支交联马铃薯淀粉的制备及性能研究[D]. 沈阳: 沈阳工业大学, 2015: 23-27.
[32] 程亚娇, 郭婷, 李本姣, 等. 改性纳米薯渣纤维素的制备优化及其形貌表征[J]. 食品与发酵工业, 2016, 42(3): 142-149.
[33] 王思远, 刘学铭. 杨晓泉, 等. 交联大豆多糖的制备及性能研究[J]. 中国粮油学报, 2013, 28(12): 33-36.
[34] 刘言佳. 不同聚合度菊粉的制备及对乳酸杆菌生长的影响[D]. 大连: 大连工业大学, 2013.