•  
  •  
 

Authors

LI Caiming, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
CHEN Shuangdi, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
GU Zhengbiao, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
HONG Yan, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
CHENG Li, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
LI Zhaofeng, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China

Abstract

This review clarified the microbial origin and properties of thermophilic α-amylase, and analyzed eight factors affecting their thermostability. The strategies to improve the thermostability of thermophilic α-amylase were proposed, which provided a reference for improving the thermostability technology of thermophilic α-amylase.

Publication Date

9-28-2018

First Page

6

Last Page

10

DOI

10.13652/j.issn.1003-5788.2018.09.002

References

[1] 岳寿松, 边斐, 代运章, 等. 产蛋白酶和淀粉酶芽孢杆菌SDYB-1的分子鉴定及酶学性能研究[J]. 山东农业科学, 2015, 47(11): 54-59.
[2] TAWIL G, VIKS-NIELSEN A, ROLLAND-SABAT A, et al. Hydrolysis of concentrated raw starch: A new very efficient α-amylase from Anoxybacillus flavothermus[J]. Carbohydrate Polymers, 2012, 87(1): 46-52.
[3] AHMADI-ABHARI S, WOORTMAN A J J, OUDHUIS A A C M, et al. The influence of amylose-LPC complex formation on the susceptibility of wheat starch to amylase[J]. Carbohydrate Polymers, 2013, 97(2): 436-440.
[4] SUNDARRAM A. Α-amylase production and applications: A review[J]. Journal of Applied & Environmental Microbiology, 2014, 2(4): 166-175.
[5] ALI I, AKBAR A, ANWAR M, et al. Purification and characterization of a polyextremophilic α-amylase from an obligate halophilic Aspergillus penicillioides isolate and its potential for souse with detergents[J]. Biomed Research International, 2015, DOI: 10.1155/2015/245649.
[6] KUMAR N M, KARTHIKEYAN S, JAYARAMAN G. Thermostable alpha-amylase enzyme production from Bacillus laterosporus: Statistical optimization, purification and characterization[J]. Biocatalysis & Agricultural Biotechnology, 2013, 2(1): 38-44.
[7] SIDDIQUE F, HUSSAIN I, MAHMOOD M S, et al. Isolation and characterization of a highly thermostable alpha-amylase enzyme produced by Bacillus licheniformis[J]. Pakistan Journal of Agricultural Sciences, 2014, 51(2): 309-314.
[8] WU Xiang-rong, WANG Yu-xia, TONG Ben-ding, et al. Purification and biochemical characterization of a thermostable and acid-stable alpha-amylase from Bacillus licheniformis B4-423[J]. International Journal of Biological Macromolecules, 2017, 109: 329-337.
[9] JANA M, MAITY C, SAMANTA S, et al. Salt-independent thermophilic α-amylase from Bacillus megaterium VUMB109: An efficacy testing for preparation of maltooligosaccharides[J]. Industrial Crops & Products, 2013, 41(1): 386-391.
[10] XIE Fu-hong, QUAN Shu-jing, LIU De-hai, et al. Purification and characterization of a novel α-amylase from a newly isolated Bacillus methylotrophicus strain P11-2[J]. Process Biochemistry, 2014, 49(1): 47-53.
[11] EMTENANI S, ASOODEH A, EMTENANI S. Gene cloning and characterization of a thermostable organic-tolerant α-amylase from Bacillus subtilis DR8806[J]. International Journal of Biological Macromolecules, 2015, 72: 290-298.
[12] LIN Yun, LIN Juan, WANG Guo-zeng, et al. Cloning, expression and characterization of the thermostable alpha-amylase gene from Geobacillus sp.WQJ-1 isolated from hot springs[J]. Journal of Fuzhou University, 2018, 46(1): 143-150.
[13] JIANG Tao, CAI Meng-hao, HUANG Meng-meng, et al. Characterization of a thermostable raw-starch hydrolyzing α-amylase from deep-sea thermophile Geobacillus sp.[J]. Protein Expression and Purification, 2015, 114: 15-22.
[14] MEHTA D, SATYANARAYANA T. Biochemical and molecular characterization of recombinant acidic and thermostable raw-starch hydrolysing α-amylase from an extreme thermophile Geobacillus thermoleovorans[J]. Journal of Molecular Catalysis B: Enzymatic, 2013, 85-86: 229-238.
[15] SHUKLA R J, SINGH S P. Characteristics and thermodyna-mics of α-amylase from thermophilic actinobacterium, Laceye-lla sacchari TSI-2[J]. Process Biochemistry, 2015, 50(12): 2 128-2 136.
[16] JUNG J-H, SEO D-H, HOLDEN J F, et al. Maltose-forming α-amylase from the hyperthermophilic archaeon Pyrococcus sp. ST04[J]. Applied Microbiology and Biotechnology, 2014, 98(5): 2 121-2 131.
[17] GOMES I, GOMES J, STEINER W. Highly thermostable amylase and pullulanase of the extreme thermophilic eubacterium Rhodothermus marinus: Production and partial characterization[J]. Bioresource Technology, 2003, 90(2): 207-214.
[18] AQUINO A, JORGE J A, TERENZI H F, et al. Studies on a thermostable alpha-amylase from the thermophilic fungus Scytalidium thermophilum[J]. Applied Microbiology and Biotechnology, 2003, 61(4): 323-328.
[19] JEON E-J, JUNG J-H, SEO D-H, et al. Bioinformatic and biochemical analysis of a novel maltose-forming α-amylase of the GH57 family in the hyperthermophilic archaeon Thermococcus sp. CL1[J]. Enzyme and Microbial Technology, 2014, 60: 9-15.
[20] DENG Zhuang-mei, YANG Hai-quan, LI Jiang-hua, et al. Structure-based engineering of alkaline α-amylase from alkalip-hilic Alkalimonas amylolytica for improved thermostability[J]. Applied Microbiology & Biotechnology, 2014, 98(9): 3 997-4 007.
[21] 邓壮梅. 分子改造提高碱性淀粉酶热稳定性[D]. 无锡: 江南大学, 2014.
[22] DING Yan-rui, CAI Yu-jie, XU Wen-bo. The study on the relationship between hydrogen bond and protein thermostability[J]. Computers & Applied Chemistry, 2007, 24(5): 641-644.
[23] BEN M S, AYADI D Z, BEN H H, et al. Thermostability improvement of maltogenic amylase MAUS149 by error prone PCR[J]. Journal of Biotechnology, 2013, 168(4): 601-606.
[24] 曾静, 郭建军, 顾斌涛, 等. Ca2+结合位点对极端嗜热α-淀粉酶ApkA高温活性及热稳定性的影响[J]. 现代食品科技, 2016(8): 90-95.
[25] LI Zhu, DUAN Xu-guo, WU Jing. Improving the thermostability and enhancing the Ca2+ binding of the maltohexaose-forming α-amylase from Bacillus stearothermophilus[J]. Journal of Biotechnology, 2016, 222: 65-72.
[26] HARADA K. Crystal structure of α-amylase from: Molecular insights into enzyme activity and thermostability[J]. Bioscience, Biotechnology, and Biochemistry, 2014, 78(6): 989-997.
[27] KHAJEH K, SHOKRI M M, ASGHARI S M, et al. Acidic and proteolytic digestion of α-amylases from Bacillus licheniformis and Bacillus amyloliquefaciens: Stability and flexibility analysis[J]. Enzyme & Microbial Technology, 2006, 38(3): 422-428.
[28] YADAV J K. A differential behavior of α-amylase, in terms of catalytic activity and thermal stability, in response to higher concentration CaCl2[J]. International Journal of Biological Macromolecules, 2012, 51(1): 146-152.
[29] LI C, LI W, HOLLER T P, et al. Polyethylene glycols enhance the thermostability of β-cyclodextrin glycosyltrans-ferase from Bacillus circulans[J]. Food Chemistry, 2014, 164: 17-22.
[30] YOON S H, ROBYT J F. Activation and stabilization of 10 starch-degrading enzymes by triton X-100, polyethylene glycols, and polyvinyl alcohols[J]. Enzyme and Microbial Technology, 2005, 37(5): 556-562.
[31] MAALEJ H, HMIDET N, GHORBEL-BELLAAJ O, et al. Purification and biochemical characterization of a detergent stable α-amylase from Pseudomonas stutzeri AS22[J]. Biotechnology and Bioprocess Engineering, 2013, 18(5): 878-887.
[32] ISMAYA W T, HASAN K, KARDI I, et al. Chemical modification of Saccharomycopsis fibuligera R64 alpha-amylase to improve its stability against thermal, chelator, and proteolytic inactivation[J]. Applied Biochemistry and Biotechnology, 2013, 170(1): 44-57.
[33] 冯旭东, 吕波, 李春. 酶分子稳定性改造研究进展[J]. 化工学报, 2016, 67(1): 277-284.
[34] 郑璐. 海藻酸钠固定化α-淀粉酶的研究[D]. 武汉: 华中农业大学, 2013: 2-4.
[35] 王华, 王莹, 詹长娟, 等. 壳聚糖小球共价固定化α-淀粉酶的研究[J]. 食品工业, 2015, 36(2): 129-132.
[36] DEFAEI M, TAHERI-KAFRANI A, MIROLIAEI M, et al. Improvement of stability and reusability of α-amylase immobilized on naringin functionalized magnetic nanoparticles: A robust nanobiocatalyst[J]. International Journal of Biological Macromolecules, 2018, 113(1): 354-360.
[37] 魏涛, 孙浩, 申玉龙, 等. Sulfolobus tokodaii strain 7高温酸性α-淀粉酶基因在大肠杆菌中克隆表达及其酶学性质[J]. 食品与发酵工业, 2013, 39(5): 13-17.
[38] 曾静, 郭建军, 袁林. 定点突变提高极端嗜热α-淀粉酶ApkA的高温活性和热稳定性[J]. 食品科学, 2017, 38(2): 20-26.
[39] LI Zhu, DUAN Xu-guo, CHEN Sheng, et al. Improving the reversibility of thermal denaturation and catalytic efficiency of Bacillus licheniformis α-amylase through stabilizing a long loop in domain B[J]. Plos One, 2017, 12(3): e0 173 187.
[40] ZHU Wei-hua, CAO Yi, LI Wei, et al. The error-prone pcr of α-amylase from Bacillus amyloliquefaciens toward enhanced acid tolerance and higher specific activity[J]. Journal of Pure & Applied Microbiology, 2013, 7(3): 1 489-1 496.
[41] XU Yan-jing, LIU Yi-han, FAN Shuai, et al. Enhancement of acid stability of alpha amylase from Bacillus licheniformis by error-prone PCR[J]. Advanced Materials Research, 2013, 774-776: 664-669.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.