•  
  •  
 

Abstract

The efficient degrading and high-temperature resistance bacteria in kitchen waste were isolated according to the characteristics of domestic kitchen waste. The microorganisms in the kitchen waste were cultured for 48 hours under the conditions of a temperature of 55 ℃ and a relative humidity of 50% RH using a nutrient agar medium (LA), and then they were screened and separated according to the colony morphology. 20 strains of bacteria were obtained, and their decomposition effects of starch, protein, oil and cellulose were determined. X13, which has the best decomposition effect, was selected and identified to be Bacillus licheniformis by morphology, physiology, biochemistry and molecular biology. The microbial agent prepared by X13 strain was used to decompose the kitchen waste. After running for 48 hours in the small kitchen waste disposer, the decomposition of the kitchen waste reached 72.82%. The results showed that the microbial agent could effectively improve the decomposition efficiency of the kitchen waste and shorten the decomposition time. Therefore, the B. licheniformis could be used in the kitchen waste decomposition industry.

Publication Date

6-28-2019

First Page

54

Last Page

58,68

DOI

10.13652/j.issn.1003-5788.2019.06.009

References

[1] 中华人民共和国住房和城乡建设部. CJJ 184—2012餐厨垃圾处理技术规范[S]. 北京: 中国建筑工业出版社, 2013: 2-3.
[2] 金杨. 餐厨垃圾特性及处理技术研究[J]. 绿色环保建材, 2017(7): 222.
[3] 李文, 魏晴, 马宁宁, 等. 校园餐厨垃圾组成及热解特性分析[J]. 甘肃科技, 2017, 33(13): 65-67.
[4] TAN E K. Food waste disposal and recycling[J]. Advanced Materials Research, 2012, 518(5): 3 221-3 226.
[5] 韩平. 餐厨垃圾的危害及综合治理对策[J]. 科技展望, 2016, 26(22): 322.
[6] BERNSTAD A, LA C J J. Review of comparative LCAs of food waste management systems: Current status and potential improvements[J]. Waste Management, 2012, 32(12): 2 439-2 455.
[7] 程亚莉, 毕桂灿, 沃德芳, 等. 国内外餐厨垃圾现状及其处理措施[J]. 新能源进展, 2017, 5(4): 266-271.
[8] NAIR J, OKAMITSU K. Microbial inoculants for small scale composting of putrescible kitchen wastes[J]. Waste Management, 2010, 30(6): 977-982.
[9] YIN Yao, LIU Ya-juan, MENG Shu-juan, et al. Enzymatic pretreatment of activated sludge, food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion[J]. Applied Energy, 2016, 179(10): 1 131-1 137.
[10] 赖明帅. 餐厨垃圾无害化处理与资源化利用技术[J]. 绿色环保建材, 2017(6): 246.
[11] 李田宇. 餐厨垃圾生化降解系统的优化及其微生物群落结构特征研究[D]. 杭州: 浙江大学, 2015: 1-24.
[12] GILL SS, JANA A M, SHRIVASTAV A. Anaerobic bacterial degradation of kitchen waste: A review[J]. Journal of Microbiology Biotechnology & Food Sciences, 2014, 4(2): 477-483.
[13] KAUR M, ARORA S. Isolation and screening of cellulose degrading bacteria in kitchen waste and detecting their degrading potential[J]. Mechanical & Civil Engineering, 2012, 1(2): 33-35.
[14] 李华, 冯凤琴, 沈立荣, 等. 淡豆豉优势菌株的鉴定及其对大豆蛋白质的分解作用[J]. 食品与发酵工业, 2011, 37(1): 1-6.
[15] 黃雁萍. 油脂分解菌之分离及其降解油脂能力之探讨[D]. 台北: 中兴大学, 2012: 1-19.
[16] 邴君妍, 罗恩华, 金宜英, 等. 中国餐厨垃圾资源化利用系统建设现状研究[J]. 环境科学与管理, 2018, 43(4): 39-43.
[17] 尹亚琳. 餐厨垃圾的处理技术[J]. 资源节约与环保, 2018(6): 106.
[18] 李杨, 蔡海莺, 赵敏洁. 高产耐高温脂肪酶生产菌的筛选与鉴定[J]. 生物技术通报, 2015(1): 144-150.
[19] VASEEKARAN S, BALAKUMAR S, ARASARATNAM V. Isolation and identification of a bacterial strain producing thermostable α-amylase[J]. Tropical Agricultural Rese-arch, 2010, 22(1): 1-11.
[20] 张慧. 高温菌株生理生化及有机物降解性质研究[D]. 上海: 华东师范大学, 2010: 4-12.
[21] 彭孝斌. 甘油—生理盐水保存菌种方法介绍[J]. 预防医学情报杂志, 2014, 30(11): 933-936.
[22] 季敏, 章建康. 美国帕斯适宜卫生科技组织[J]. 国际生物制品学杂志, 2011, 34(4): 211-213.
[23] 丁杰萍, 周静, 王潇, 等. 兰州城区餐厨垃圾成分分析[J]. 甘肃科技, 2018, 34(18): 57-60.
[24] 咸芳. 餐厨垃圾高效处理复合微生物菌剂的研究[D]. 长春: 吉林大学, 2009: 17-23.
[25] 布坎南. 伯杰细菌鉴定手册[M]. 中国科学院微生物研究所《伯杰细菌鉴定手册》翻译组, 译. 北京: 科学出版社, 1995: 591-611.
[26] 郑旴, 陈泽斌, 夏体渊, 等. 餐厨垃圾好氧降解菌的筛选鉴定[J]. 西南农业学报, 2016, 29(2): 420-424.
[27] 段怡臣. 餐厨垃圾高效生物降解菌降解效果试验研究[J]. 科学家, 2016(17): 31-32.
[28] AUREPATIPAN N, CHAMPREDA V, KANOKRAT-ANA P, et al. Assessment of bacterial communities and activities of thermotolerant enzymes produced by bacteria indigenous to oil-bearing sandstone cores for potential application in Enhanced Oil Recovery[J]. Journal of Petroleum Science & Engineering, 2018, 163(4): 259-302.
[29] 荆哲华, 吴浩浩, 朱素芹, 等. 耐高温胶原蛋白酶菌株的筛选和产酶条件优化[J]. 食品科技, 2017(12): 11-17.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.