•  
  •  
 

Abstract

The ICEM software was used to mesh the model of turbo air classifier and numerical simulation was performed by Fluent software to characterize separation process of potato starch. The effect of parameters such as rotational speed, inlet velocity and number of rotor blades on the cut size were studied. The response surface analysis method was used to optimize process parameters on turbo air classifier. The results indicated that the rotational speed, inlet velocity and number of rotor blades all influenced the cut size of potato starch. The order of effect on cut size was as followed: rotational speed>inlet velocity>number of rotor blades. The optimal parameter condition obtained by response surface method was as followed: rotational speed was 3 378 r/min, inlet velocity was 19 m/s, and number of rotor blades was 16. Under the control of these conditions, the cut size of turbo air classifier was 11.2 μm.

Publication Date

9-28-2019

First Page

116

Last Page

121

DOI

10.13652/j.issn.1003-5788.2019.09.023

References

[1] 陈启杰, 郑学铭, 周丽玲, 等. 纳米淀粉的研究及其在食品工业中的应用[J]. 食品与机械, 2017, 33(7): 210-214, 220.
[2] WANG Chan, TANG Chuan-he, FU Xiong, et al. Granular size of potato starch affects structural properties, octenylsuccinic anhydride modification and flowability[J]. Food Chemistry, 2016, 212: 453-459.
[3] 李晓文, 熊兴耀. 颗粒粒径对马铃薯淀粉糊黏弹性的影响[J]. 中国粮油学报, 2008, 23(2): 59-61.
[4] 刘成梅, 王振兴, 刘伟. 机械法制备超微大米淀粉的研究[J]. 食品科学, 2008, 29(10): 243-246.
[5] 刘蓉蓉, 刘家祥, 于源. 涡流空气分级机进口风速和转笼转速匹配研究[J]. 化学工程, 2015, 43(3): 41-45.
[6] REN Wen-jin, LIU Jia-xiang, YU Yuan. Design of a rotor cage with non-radial arc blades for turbo air classifiers[J]. Powder Technology, 2016, 292: 46-53.
[7] 陈以威, 夏必忠, 陈波. 分级轮叶片结构和转速对分级性能影响的仿真[J]. 中国粉体技术, 2015, 21(4): 6-9.
[8] HUANG Qiang, LIU Jia-xiang, YU Yuan. Turbo air classifier guide vane improvement and inner flow field numerical simulation[J]. Powder Technology, 2012, 226(8): 10-15.
[9] 陈海焱, 张明星, 颜翠平. 涡轮分级机分级轮流场的数值模拟与分析[J]. 中国粉体技术, 2008, 14(5): 1-4.
[10] 刘丹, 宋杨. 涡流分级机的分级轮研究[J]. 化工装备技术, 2013, 34(3): 6-9.
[11] 何福军, 方莹, 江浪. 涡流分级机分级精度的影响因素分析[J]. 矿山机械, 2016, 44(8): 1-4.
[12] 何福军, 方莹, 秦键波. 新型涡流分级机分级区流场特性数值模拟研究[J]. 硅酸盐通报, 2016, 35(12): 4 128-4 132.
[13] YU Yuan, LIU Jia-xiang, ZHANG Kai. Establishment of a prediction model for the cut size of turbo air classifiers[J]. Powder Technology, 2014, 254: 274-280.
[14] ZHANG Guang-wen, TAN Zhi-hai, HOU Hao, et al. Lignite upgrading using a pulsing air classifier[J]. Energy Sources Part A Recovery Utilization & Environmental Effects, 2018, 40(1): 33-38.
[15] SANG Shi-hua, ZHANG Xiao. Solubility investigations in the systems Li2SO4 + Li2B4O7 + H2O and K2SO4 + K2B4O7 + H2O at 288 K[J]. Journal of Chemical & Engineering Data, 2009, 55(2): 808-812.
[16] 焦渤, 沈志刚, 赵小虎. 气流分级机流场的数值模拟与优化[J]. 中国粉体技术, 2009, 15(5): 1-6.
[17] 袁惠新, 方勇, 付双成, 等. 旋流器的微米级颗粒分级性能分析[J]. 化工进展, 2017, 36(12): 4 371-4 377.
[18] 赵雪珍, 石九菊, 周全. 通道式微型分级机理论模型的研究[J]. 珪酸盐通报, 2011, 30(3): 745-749.
[19] 赵雪珍, 周勇敏. 涡流分级机分级精度影响因素的研究进展[J]. 中国矿业, 2010, 19(6): 92-94.
[20] 侯志强, 侯书军, 彭伟, 等. 操作参数对超细气流分级机内流场影响规律的数值模拟[J]. 矿山机械, 2010, 38(21): 101-105.
[21] 陈杰, 黄国平, 梁德旺. 叶片数对微型斜流叶轮性能的影响[J]. 航空动力学报, 2008, 23(9): 1 007-1 011.
[22] 龚翠平, 杨威, 刘静. 涡流空气分级机的分级效率与分级精度[J]. 中国粉体技术, 2014, 20(4): 80-82.
[23] 侯志强, 侯书军, 彭伟, 等. 转子结构对超细气流分级机内部流场影响规律的数值模拟[J]. 矿山机械, 2010(19): 102-107.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.