•  
  •  
 

Abstract

The rapid detection methods of traditional probiotics, the next-generation probiotics based on immunological detection technology and molecular biology detection technology was reviewed, and the rapid detection technology development was prospected.

Publication Date

11-28-2021

First Page

198

Last Page

204,220

DOI

10.13652/j.issn.1003-5788.2021.11.035

References

[1] LIU Hai-ning, WU Hao, CHEN Yu-zhuo, et al. Altered molecular signature of intestinal microbiota in irritable bowel syndrome patients compared with healthy controls: A systematic review and meta-analysis[J]. Digestive & Liver Disease, 2017, 49(4): 331-337.
[2] LI Qing-xiang, LI Yu-ke, WANG Yi-fei, et al. Oral administration of Bifidobacterium breve promotes antitumor efficacy via dendritic cells-derived interleukin 12[J]. OncoImmunology, 2021, 10(1): 1868122.
[3] YUAN Jia, GUO Li-min, YANG Si-yuan, et al. Effectiveness of probiotics in irritable bowel syndrome: Methodological quality of meta-analyses and systematic reviews[J]. Frontiers of Nursing, 2019, 6(2): 115-121.
[4] ALTAMIRANO-BARRERA A, URIBE M, CHVEZ-TAPIA N C, et al. The role of the gut microbiota in the pathology and prevention of liver disease[J]. The Journal of Nutritional Biochemistry, 2018, 60: 1-8.
[5] ANDRE A, TICINES I, CLAUDI O, et al. The intestinal microbiome and its relevance for functionality in older persons[J]. Current Opinion in Clinical Nutrition & Metabolic Care, 2019, 22(1): 4-12.
[6] PINTO-SANCHEZ M I, HALL G B, GHAJAR K, et al. Probiotic Bifidobacterium longum NCC3001 reduces depression scores and alters brain activity: A pilot study in patients with irritable bowel syndrome[J]. Gastroenterology, 2017, 153(2): 448-459.
[7] O'TOOLE P W, MARCHESI J R, HILL C. Next-generation probiotics: The spectrum from probiotics to live biotherapeutics[J]. Nature Microbiology, 2017, 2(5): 1-6.
[8] SATOKARI R. Modulation of gut microbiota for health by current and next-generation probiotics[J]. Nutrients, 2019, 11(8): 1 921.
[9] ULSEMER P, TOUTOUNIAN K, KRESSEL G, et al. Impact of oral consumption of heat-treated Bacteroides xylanisolvens DSM 23964 on the level of natural TF α-specific antibodies in human adults[J]. Beneficial Microbes, 2016, 7(4): 485-500.
[10] ZHOU Ke-quan. Strategies to promote abundance of Akkermansia muciniphila, an emerging probiotics in the gut, evidence from dietary intervention studies[J]. Journal of Functional Foods, 2017, 33: 194-201.
[11] GASPAR C, PALMIRA-DE-OLIVEIRA R, MARTINEZ-DE-OLIVEIRA J, et al. Development and validation of a new one step Multiplex-PCR assay for the detection of ten Lactobacillus species[J]. Anaerobe, 2019, 59: 192-200.
[12] MYINT O, YOSHIDA A, SEKIGUCHI S, et al. Development of indirect enzyme-linked immunosorbent assay for detection of porcine epidemic diarrhea virus specific antibodies (IgG) in serum of naturally infected pigs[J]. BMC Veterinary Research, 2019, 15(1): 1-8.
[13] 侯瑾, 李迎秋. 酶联免疫吸附技术在食品安全检测中的应用[J]. 中国调味品, 2017, 42(6): 165-169.
[14] 袁耀武, 张伟, 田洪涛, 等. 乳制品中双歧杆菌的快速检测[J]. 食品与发酵工业, 2004, 30(6): 104-107.
[15] 庄翘楚, 孟祥晨. 双抗夹心ELISA法检测双歧杆菌反应条件的优化[J]. 中国乳品工业, 2008(5): 55-58.
[16] CIMAFONTE M, FULGIONE A, GAGLIONE R, et al. Screen printed based impedimetric immunosensor for rapid detection of Escherichia coli in drinking water[J]. Sensors, 2020, 20(1): 274.
[17] XUE Yu, JIANG Dong-lei, HU Qin, et al. Electrochemical magnetic bead-based immunosensor for rapid and quantitative detection of probiotic Lactobacillus rhamnosus in dairy products[J]. Food Analytical Methods, 2019, 12(5): 1 197-1 207.
[18] ZHAO Le. Horseradish peroxidase labelled-sandwich electrochemical sensor based on ionic liquid-gold nanoparticles for Lactobacillus brevis[J]. Micromachines, 2021, 12(1): 75.
[19] PYO D, YOO J. New trends in fluorescence immunochromatography[J]. Journal of Immunoassay and Immunochemistry, 2012, 33(2): 203-222.
[20] 闫灵芝. 免疫层析试纸条技术在食品安全领域的研究进展[J]. 食品工业科技, 2021, 42(11): 397-404.
[21] ZHU Ming-song, JIA Yu-rui, PENG Li-zhi, et al. A highly sensitive dual-color lateral flow immunoassay for brucellosis using one-step synthesized latex microspheres[J]. Analytical Methods, 2019, 11(22): 2 937-2 942.
[22] MORALES-NARVEZ E, NAGHDI T, ZOR E, et al. Photoluminescent lateral-flow immunoassay revealed by graphene oxide: Highly sensitive paper-based pathogen detection[J]. Analytical Chemistry, 2015, 87(16): 8 573-8 577.
[23] ZHANG Bo, YANG Xing-shen, LIU Xiao-xian, et al. Polyethyleneimine-interlayered silica-core quantum dot-shell nanocomposites for sensitive detection of Salmonella typhimurium via a lateral flow immunoassay[J]. RSC Advances, 2020, 10(5): 2 483-2 489.
[24] WANG Ling, ZHANG Jun-xian, BAI Hai-li, et al. Specific detection of Vibrio Parahaemolyticus by fluorescence quenching immunoassay based on quantum dots[J]. Appl Biochem Biotechnol, 2014, 173(5): 1 073-1 082.
[25] 黄震, 肖小月, 熊智娟, 等. 上转换免疫层析方法检测牛奶中大肠杆菌O157:H7[J]. 南昌大学学报(理科版), 2019, 43(6): 556-563.
[26] QU Qing, ZHU Zi-wen, WANG Yu-fei, et al. Rapid and quantitative detection of Brucella by up-converting phosphor technology-based lateral-flow assay[J]. Journal of Microbiological Methods, 2009, 79(1): 121-123.
[27] SHI Lei, WU Feng, WEN Yi-ming, et al. A novel method to detect Listeria monocytogenes via superparamagnetic lateral flow immunoassay[J]. Analytical and Bioanalytical Chemistry, 2015, 407(2): 529-535.
[28] WANG Dian-bing, TIAN Bo, ZHANG Zhi-ping, et al. Rapid detection of Bacillus anthracis spores using a super-paramagnetic lateral-flow immunological detectionsystem[J]. Biosensors & Bioelectronics, 2013, 42: 661-667.
[29] 李雨芮, 刘晓雅, 张文劲, 等. 免疫层析技术及应用的研究进展[J]. 中国兽医学报, 2021, 41(1): 192-198.
[30] 陈诗胜, 张正荣, 任建鸾, 等. 奶牛乳房炎四种致病菌PCR核酸免疫层析试纸条快速检测方法的建立及应用[J]. 中国兽医科学, 2020, 50(3): 283-293.
[31] ZHANG Li-hua. Discussion on application of molecular biology technology in pathogenic microorganism examination[J]. E3S Web of Conferences, 2020, 189(3): 02001.
[32] HE Lei, LU Dan-qing, LIANG Hao, et al. Fluorescence resonance energy transfer-based DNA tetrahedron nanotweezer for highly reliable detection of tumor-related mRNA in living cells[J]. Acs Nano, 2017, 11(4): 4 060-4 066.
[33] AMANN R, FUCHS B M. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques[J]. Nature Reviews Microbiology, 2008, 6(5): 339-348.
[34] MOTER A, GBEL U B. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms[J]. Journal of Microbiological Methods, 2000, 41(2): 85-112.
[35] SUJALA K, MARGOOB A, VINEETA S, et al. Reliability of detecting rRNA sequences of Chlamydia trachomatis with fluorescence in situ hybridization without amplification[J]. Acta Cytologica, 2006, 50(3): 277-283.
[36] CERQUEIRA L, AZEVEDO N F, ALMEIDA C, et al. DNA mimics for the rapid identification of microorganisms by fluorescence in situ hybridization (FISH)[J]. International Journal of Molecular Sciences, 2008, 9(10): 1 944-1 960.
[37] MACHADO A, ALMEIDA C, CARVALHO A, et al. Fluorescence in situ hybridization method using a peptide nucleic acid probe for identification of Lactobacillus spp. in milk samples[J]. International Journal of Food Microbiology, 2013, 162(1): 64-70.
[38] FERREIRA A M, CRUZ-MOREIRA D, CERQUEIRA L, et al. Yeasts identification in microfluidic devices using peptide nucleic acid fluorescence in situ hybridization (PNA-FISH)[J]. Biomedical Microdevices, 2017, 19(1): 11.
[39] BANNISTER S, KIDD S, KIRBY E, et al. Development and assessment of a diagnostic DNA oligonucleotide microarray for detection and typing of meningitis-associated bacterial species[J]. High-Throughput, 2018, 7(4): 32.
[40] MILLER M B, TANG Y W. Basic concepts of microarrays and potential applications in clinical microbiology[J]. Clinical Microbiology Reviews, 2009, 22(4): 611-633.
[41] NELSON T A, HOLMES S, ALEKSEYENKO A V, et al. PhyloChip microarray analysis reveals altered gastrointestinal microbial communities in a rat model of colonic hypersensitivity[J]. Neurogastroenterology & Motility, 2011, 23(2): 169-177.
[42] PATZ S, WITZEL K, SCHERWINSKI A C, et al. Culture dependent and independent analysis of potential probiotic bacterial genera and species present in the phyllosphere of raw eaten produce[J]. International Journal of Molecular Sciences, 2019, 20(15): 3 661.
[43] BOESTEN R J, SCHUREN F H J, VOS W M D. A Bifidobacterium mixed-species microarray for high resolution discrimination between intestinal bifidobacteria[J]. Journal of Microbiological Methods, 2009, 76(3): 269-277.
[44] LI Ren, JIA Fei, ZHANG Wei-kai, et al. Device for whole genome sequencing single circulating tumor cells from whole blood[J]. Lab on a Chip, 2019, 19(19): 3 168-3 178.
[45] 刘艳枚, 杨梦, 刘倩, 等. 基因芯片技术在慢性乙型肝炎患者中耐药基因检测的应用情况[J]. 中国现代药物应用, 2019, 13(1): 241-242.
[46] NEOH H M, TAN X E, SAPRI H F, et al. Pulsed-field gel electrophoresis (PFGE): A review of the "gold standard" for bacteria typing and current alternatives[J]. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 2019, 74: 103935.
[47] 豆清娅, 吴安华. 脉冲场凝胶电泳技术及其在细菌感染性疾病中的应用[J]. 中国感染控制杂志, 2017, 16(7): 683-686.
[48] YANG Chao, YU Tao. Characterization and transfer of antimicrobial resistance in lactic acid bacteria from fermented dairy products in China[J]. The Journal of Infection in Developing Countries, 2019, 13(2): 137-148.
[49] MULLI S, KARY B. The unusual origin of the polymerase chain reaction[J]. Scientific American, 1990, 262(4): 64-65.
[50] YADAV R, SHUKLA P. An overview of advanced technologies for selection of probiotics and their expediency: A review[J]. Critical Reviews in Food Science & Nutrition, 2015, 57(15): 3 233-3 242.
[51] KAMILA O, ZOFIA P S, MARIUSZ C. Use of the PCR-DGGE method for the analysis of the bacterial community structure in soil treated with the cephalosporin antibiotic cefuroxime and/or inoculated with a multidrug-resistant pseudomonas putida strain MC1[J]. Frontiers in Microbiology, 2018, 9: 1 387.
[52] ENDO A, FUTAGAWA-ENDO Y, DICKS L M T. Lactobacillus and Bifidobacterium diversity in horse feces, revealed by PCR-DGGE[J]. Current Microbiology, 2009, 59(6): 651-655.
[53] YANG Gui-qin, ZHANG Pei, LIU Hai-ying, et al. Spatial variations in intestinal skatole production and microbial composition in broilers[J]. Nihon Chikusan Gakkaihō, 2019, 90(3): 412-422.
[54] WANG Yu-rong SHE Mi-na, LIU Kang-ling, et al. Evaluation of the bacterial diversity of inner mongolian acidic gruel using illumina MiSeq and PCR-DGGE[J]. Current Microbiology, 2020, 77(3): 434-442.
[55] NALEPA B, MARKIEWICZ L H. PCR-DGGE markers for qualitative profiling of microbiota in raw milk and ripened cheeses[J]. LWT-Food Science and Technology, 2017, 84(1): 168-174.
[56] 彭媛媛, 武煊, 陶晓奇. 实时荧光PCR技术定量检测肉类掺假的研究进展[J]. 食品与发酵工业, 2019, 45(15): 279-287.
[57] STACHELSKA M A. Identification of Lactobacillus delbrueckii and Streptococcus thermophilus strains present in artisanal raw cow milk cheese using real-time PCR and classic plate count methods[J]. Polish Journal of Microbiology, 2017, 66(4): 491-499.
[58] 秦倩倩, 张玲, 王国庆. 实时荧光PCR定量检测粪便中Akkermansia muciniphila方法研究[J]. 四川大学学报(医学版), 2018, 49(1): 93-97.
[59] EMERSON J B, ADAMS R I, ROMN C M B, et al. Schrdinger's microbes: Tools for distinguishing the living from the dead in microbial ecosystems[J]. Microbiome, 2017, 5(1): 1-23.
[60] LU Xu-cong, LI Yan, QIU Wan-wei, et al. Development of propidium monoazide combined with real-time quantitative PCR (PMA-qPCR) assays to quantify viable dominant microorganisms responsible for the traditional brewing of Hong Qu glutinous rice wine[J]. Food Control, 2016, 66: 69-78.
[61] 段亮杰, 沙雨婷, 罗意, 等. 叠氮溴化丙锭—荧光定量PCR法实时快速检测5种乳杆菌活菌数方法的建立与应用[J]. 微生物学通报, 2020, 47(12): 4 317-4 327.
[62] SHAO Yu-yu, WANG Zhao-xia, BAO Qiu-hua, et al. Application of propidium monoazide quantitative real-time PCR to quantify the viability of Lactobacillus delbrueckii ssp. bulgaricus[J]. Journal of Dairy Science, 2016, 99(12): 9 570-9 580.
[63] GOBERT G, COTILLARD A, FOURMESTRAUX C, et al. Droplet digital PCR improves absolute quantification of viable lactic acid bacteria in faecal samples[J]. Journal of Microbiological Methods, 2018, 148: 64-73.
[64] ZHANG Jia-zhen, CHEN Jian-cheng, WEI Shi-zhong, et al. Diagnostic devices for isothermal nucleic acid amplification[J]. Sensors, 2012, 12(6): 8 319-8 337.
[65] 范一灵, 杨美成. 环介导等温扩增技术快速检测双歧杆菌属细菌[J]. 食品安全质量检测学报, 2016, 7(3): 20-28.
[66] LEE S, JANG H, KIM H Y, et al. Three-way junction-induced isothermal amplification for nucleic acid detection[J]. Biosensors & Bioelectronics, 2019, 147: 111762.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.