•  
  •  
 

Abstract

This paper reviewed the research results of physical modification of egg white protein in recent years, described the role of physical modification methods on the function improvement of egg white protein, and analyzed the characteristics of various modification methods in improving the functional properties of egg white protein.

Publication Date

3-28-2021

First Page

195

Last Page

200

DOI

10.13652/j.issn.1003-5788.2021.03.035

References

[1] 张冰. 我国禽蛋生产、贸易及国际竞争力研究[D]. 呼和浩特: 内蒙古农业大学, 2005: 1.
[2] 张华智. 当前我国禽蛋加工的主要方式与未来发展的几点建议[J]. 广西畜牧兽医, 2016, 32(4): 213-215.
[3] 刘超. 蛋清蛋白的改性及其起泡特性研究[D]. 武汉: 湖北工业大学, 2008.
[4] CHEN Chen, CHI Yu-jie. Antioxidant, ACE inhibitory activities and functional properties of egg white protein hydrolysate[J]. Journal of Food Biochemistry, 2012, 36(4): 383-394.
[5] 许美玉, 王希希, 黄群, 等. 酶法改善卵白蛋白乳化性研究[J]. 食品工业科技, 2017, 38(8): 150-155.
[6] 郑平. 关于加快禽蛋加工业发展的思考[J]. 台湾农业探索, 2011(3): 46-49.
[7] 胡书蒙, 温佳奇, 苏亮, 等. 蛋清加工利用及蛋清活性肽的研究进展[J]. 食品科技, 2017, 42(12): 261-264.
[8] 王希希, 许美玉, 林超, 等. 湿法糖基化改善卵白蛋白的起泡性[J]. 福建农林大学学报(自然科学版), 2017, 46(5): 595-600.
[9] SADAHIRA Mitie S, RODRIGUES Maria I, AKHTAR Mahmood, et al. Influence of pH on foaming and rheological properties of aerated high sugar system with egg white protein and hydroxypropylmethylcellulose[J]. LWT-Food Science and Technology, 2018, 89: 350-357.
[10] HUANG Tao, TU Zong-cai, WANG Hui, et al. Promotion of foam properties of egg white protein by subcritical water pre-treatment and fish scales gelatin[J]. Physicochemical and Engineering Aspects, 2017, 512: 171-177.
[11] 李鑫. 基于界面特性解析蛋清蛋白体系泡沫性质及其调控机理研究[D]. 无锡: 江南大学, 2020: 1.
[12] 李俐鑫, 迟玉杰, 于滨. 蛋清蛋白凝胶特性影响因素的研究[J]. 食品科学, 2008, 29(3): 46-49.
[13] 李玉珍, 肖怀秋, 赵谋明, 等. 花生蛋白质改性机理及应用研究进展[J]. 粮食科技与经济, 2016, 41(5): 65-69.
[14] 何伟明, 叶劲松, 师洁. 蛋白质改性对禽蛋粉加工性能影响的研究进展[J]. 食品与机械, 2018, 34(10): 185-190, 195.
[15] 郭超凡, 王云阳. 蛋白质物理改性的研究进展[J]. 食品安全质量检测学报, 2017, 8(2): 428-433.
[16] JAMBRAK A R, LELAS V, MASONT J, et al. Physical properties of ultrasound treated soy proteins[J]. Journal of Food Engineering, 2009, 93(4): 386-393.
[17] JAMBRAK A R, MASON T J, LELAS V, et al. Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions[J]. Journal of Food Engineering, 2008, 86(2): 281-287.
[18] IBANOLU E, KARATAS 瘙塁. High pressure effect on foaming behaviour of whey protein isolate[J]. Journal of Food Engineering, 2001, 47(1): 31-36.
[19] 王丽娟. 脉冲电场处理对双低油菜出油率及油脂和蛋白性质的影响[D]. 扬州: 扬州大学, 2016: 53-54.
[20] 阎乃珺. 动态高压微射流对小麦面筋蛋白性质和结构的影响[D]. 广州: 华南理工大学, 2013: 15-26.
[21] SUN Chan-chan, LIU Rui, WU Tao, et al. Effect of superfine grinding on the structural and physicochemical properties of whey protein and applications for microparticulated proteins[J]. Food Science and Biotechnology, 2015, 24(5): 1 637-1 643.
[22] 吴雯倩, 左姣丽, 肖冰, 等. 热处理对蛋白质的影响[J]. 食品安全导刊, 2015(36): 45.
[23] KATO Akio, FUJIMOTO Kumiko, MATSUDOMI Naotoshi, et al. Protein flexibility and functional properties of heat-denatured ovalbumin and lysozyme[J]. Agricultural and Biological Chemistry, 1986, 50(2): 417-420.
[24] PLANCKEN Iesel Van der, LOEY Ann Van, HENDRICKX Marc E. Foaming properties of egg white proteins affected by heat or high pressure treatment[J]. Journal of Food Engineering, 2006, 78(4): 1 410-1 426.
[25] MANZOCCO Lara, PANOZZO Agnese, NICOLI Maria Cristina. Effect of pulsed light on selected properties of egg white[J]. Innovative Food Science and Emerging Technologies, 2013, 18: 183-189.
[26] 迟玉杰, 鲍志杰, 程缘. 蛋清蛋白质热处理改性及其热聚集行为的研究进展[J]. 食品安全质量检测学报, 2014, 5(12): 3 951-3 954.
[27] WU Li, ZHAO Wei, YANG Rui-jin, et al. Aggregation of egg white proteins with pulsed electric fields and thermal processes[J]. Journal of the Science of Food and Agriculture, 2016, 96(10): 3 334-3 341.
[28] CHANG Cui-hua, NIU Fu-ge, SU Yu-jie, et al. Characteristics and emulsifying properties of acid and acid-heat induced egg white protein[J]. Food Hydrocolloids, 2016, 54: 342-350.
[29] KATO A, IBRAHIM H R, WATANABEH, et al. New approach to improve the gelling and surface functional properties of dried egg white by heating in dry state[J]. Agricultural and Biological Chemistry, 1989, 37(2): 433-437.
[30] DUAN Xiang, LI Mei, SHAO Jing, et al. Effect of oxidative modification on structural and foaming properties of egg white protein[J]. Food Hydrocolloids, 2018, 75: 223-228.
[31] KATO Akio, OSAKO Yukiko, MATSUDOMI Naotoshi, et al. Changes in the emulsifying and foaming properties of proteins during heat denaturation[J]. Agricultural and Biological Chemistry, 1983, 47(1): 33-37.
[32] 胥伟, 代钰, 王宏勋, 等. 冷冻处理对蛋清液起泡性与凝胶性的影响[J]. 食品工业, 2019, 40(5): 96-98.
[33] 潘珂. 冷冻工艺对面筋起泡特性的影响[J]. 粮油加工, 2008(8): 81-82.
[34] 张立斌, 陈小侠, 吴汉东. 鸡蛋清卵黏蛋白分离工艺研究[J]. 饲料研究, 2017(5): 27-29, 43.
[35] 王一博. 高起泡性蛋清液制备与应用研究[D]. 武汉: 华中农业大学, 2016.
[36] 于滨, 王喜波. 鸡蛋品质与蛋白凝胶性的相关性研究[J]. 食品工业, 2012, 33(9): 13-16.
[37] SHRIVER Sandra K, YANG Wade W. Thermal and nonthermal methods for food allergen control[J]. Food Engineering Reviews, 2011, 3(1): 26-43.
[38] SORIA Ana Cristina, VILLAMIEL Mar. Effect of ultrasound on the technological properties and bioactivity of food: A review[J]. Trends in Food Science & Technology, 2010, 21(7): 323-331.
[39] ODUEKE Oluwakemi B, FARAG Karim W, BAINES Richard N, et al. Irradiation applications in dairy products: A review[J]. Food and Bioprocess Technology, 2016, 9(5): 751-767.
[40] SUN Jun, MU Yao-yao, JING Hui, et al. Effects of single-and dual-frequency ultrasound on the functionality of egg white protein[J]. Journal of Food Engineering, 2020, 277: 109902.
[41] SHENG Long, WANG Yi-bo, CHEN Jia-hui, et al. Influence of high-intensity ultrasound on foaming and structural properties of egg white[J]. Food Research International, 2018, 108: 604-610.
[42] 李弓中, 赵英, 王俊彤, 等. 超声处理对蛋清蛋白结构性质及蛋清液起泡性的影响[J]. 食品科学, 2019, 40(9): 68-75.
[43] ARZENI C, MARTNEZ K, ZEMA P, et al. Comparative study of high intensity ultrasound effects on food proteins functionality[J]. Journal of Food Engineering, 2012, 108(3): 463-472.
[44] 孙卓, 李佩珊, 盛龙, 等. 超声处理对蛋清粉速溶性的影响[J]. 食品科学, 2018, 39(21): 78-86.
[45] LI Xiang, FARID Mohammed. A review on recent development in non-conventional food sterilization technologies[J]. Journal of Food Engineering, 2016, 182: 33-45.
[46] 张铁华, 殷涌光, 刘静波. 高压脉冲电场(PEF)对蛋清蛋白功能特性的影响[J]. 食品科学, 2007, 28(9): 98-102.
[47] 赵伟, 杨瑞金, 张文斌, 等. 高压脉冲电场作用下蛋清蛋白功能性质和结构的变化[J]. 食品科学, 2011, 32(9): 91-96.
[48] WU Li, ZHAO Wei, YANG Rui-jin, et al. Effects of pulsed electric fields processing on stability of egg white proteins[J]. Journal of Food Engineering, 2014, 139: 13-18.
[49] 许世闯, 徐宝才, 奚秀秀, 等. 超高压技术及其在食品中的应用进展[J]. 河南工业大学学报(自然科学版), 2016, 37(5): 111-117.
[50] LULLIEN-PELLERIN V, BALNY C. High-pressure as a tool to study some proteins' properties: Conformational modification, activity and oligomeric dissociation[J]. Innovative Food Science and Emerging Technologies, 2002, 3(3): 209-221.
[51] 涂宗财, 豆玉新, 刘成梅, 等. 动态超高压均质对蛋清蛋白溶液的起泡性、成膜性的影响[J]. 食品工业科技, 2008, 29(6): 77-78, 81.
[52] PLANCKEN Iesel Van der, GRAUWET Tara, OEY Indrawati, et al. Impact evaluation of high pressure treatment on foods: Considerations on the development of pressure-temperature-time integrators (pTTIs) [J]. Trends in Food Science & Technology, 2007, 19(6): 337-348.
[53] CHAPLEAU N, DE LAMBALLERIE-ANTON M. Improvement of emulsifying properties of lupin proteins by high pressure induced aggregation[J]. Food Hydrocolloids, 2003, 17(3): 273-280.
[54] IAMETTI S, DONNIZZELLI E, PITTIA P, et al. Characterization of high-pressure-treated egg albumen[J]. Journal of Agricultural and Food Chemistry, 1999, 47(9): 3 611-3 616.
[55] 吴溪. 超高压辅助木瓜蛋白酶改善大豆分离蛋白起泡性及其应用[D]. 哈尔滨: 东北农业大学, 2017: 8.
[56] RAMADHAN Kurnia, FOSTER Tim J. Effects of ball milling on the structural, thermal, and rheological properties of oat bran protein flour[J]. Journal of Food Engineering, 2018, 229: 50-56.
[57] HE Sheng-hua, QIN Yi-bing, WALID Elfalleh, et al. Effect of ball-milling on the physicochemical properties of maize starch[J]. Biotechnology Reports, 2014, 3: 54-59.
[58] LIU Bo-hui, WANG Hui, HU Tan, et al. Ball-milling changed the physicochemical properties of SPI and its cold-set gel[J]. Journal of Food Engineering, 2017, 195: 158-165.
[59] SUN Chan-chan, LIU Rui, WU Tao, et al. Effect of superfine grinding on the structural and physicochemical properties of whey protein and applications for microparticulated proteins[J]. Food Science and Biotechnology, 2015, 24(5): 1 637-1 643.
[60] ZHANG Qin-jun, YANG Lu, HU Shu-ting, et al. Consequences of ball-milling treatment on the physicochemical, rheological and emulsifying properties of egg phosvitin[J]. Food Hydrocolloids, 2019, 95: 418-425.
[61] LI Mei, LI Meng-meng, TAN Wen, et al. Effects of ball-milling treatment on physicochemical and foaming activities of egg ovalbumin[J]. Journal of Food Engineering, 2019, 261: 158-164.
[62] LIU Fu-guo, ZHANG Shu-han, LI Jun-yi, et al. Recent development of lactoferrin-based vehicles for the delivery of bioactive compounds: Complexes, emulsions, and nanoparticles[J]. Trends in Food Science & Technology, 2018, 79: 67-77.
[63] 黄群, 杨万根, 金永国, 等. 卵白蛋白起泡性影响因素研究[J]. 食品与机械, 2014, 30(5): 54-56, 63.
[64] 谭文, 张钦俊, 万鹏宇, 等. 球磨处理对鸡蛋蛋清蛋白结构、性质及起泡性的影响[J/OL]. 食品科学. [2020-09-28]. http://kns.cnki.net/kcms/detail/11.2206.TS.20200924.1333.002.html.
[65] TONG Ping, GAO Jin-yan, CHEN Hong-bing, et al. Effect of heat treatment on the potential allergenicity and conformational structure of egg allergen ovotransferrin[J]. Food Chemistry, 2012, 131(2): 603-610.
[66] GUO Xiao-juan, CHEN Ming-shun, LI Yu-ting, et al. Modification of food macromolecules using dynamic high pressure microfluidization: A review[J]. Trends in Food Science & Technology, 2020, 100: 223-234.
[67] ZHONG Jun-zhen, LIU Wu, LIU Cheng-mei, et al. Aggregation and conformational changes of bovine β-lactoglobulin subjected to dynamic high-pressure microfluidization in relation to antigenicity[J]. Journal of Dairy Science, 2012, 95(8): 4 237-4 245.
[68] 刘伟. 动态高压微射流技术对酶的活性与构象变化的影响[D]. 南昌: 南昌大学, 2009: 11.
[69] 涂宗财. 蛋白质动态超高压微射流改性研究及机理初探[D]. 南昌: 南昌大学, 2007: 98-115.
[70] 迟玉杰, 李胤楠, 赵英. 动态高压微射流对蛋清蛋白致敏性及体外消化的影响[J]. 农业机械学报, 2017, 48(6): 312-318.
[71] LIU Guang-xian, TU Zong-cai, WANG Hui, et al. Monitoring of the functional properties and unfolding change of Ovalbumin after DHPM treatment by HDX and FTICR MS: Functionality and unfolding of Oval after DHPM by HDX and FTICR MS[J]. Food Chemistry, 2017, 227: 413-421.
[72] SHEN Lan, TANG Chuan-he. Microfluidization as a potential technique to modify surface properties of soy protein isolate MS: Functionality and unfolding of Oval after DHPM by HDX and FTICR MS[J]. Food Research International, 2012, 48(1): 108-118.
[73] CHEN Hao, HONG Qi-tong, ZHONG Jun-zhen, et al. The enhancement of gastrointestinal digestibility of β-LG by dynamic high-pressure microfluidization to reduce its antigenicity[J]. International Journal of Food Science and Technology, 2019, 54(5): 1 677-1 683.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.