•  
  •  
 

Abstract

Objective: Solved the problems of poor motion stability and accuracy in the food sorting process of parallel robots. Methods: Based on the analysis of the three degree of freedom food sorting robot system, a method proposed which combined polynomial interpolation and improve multi-objective particle swarm optimization algorithm for Delta robot trajectory optimization. As a parallel robot, the optimization of the shortest operation time, lowest energy consumption, and minimal motion impact were taken as multiple objectives. The improved multi-objective particle swarm optimization algorithm was applied to optimize the polynomial interpolation method, and its performance was validated. Results: The planning trajectory of the proposed planning method in the experiment was smoother and more efficient compared to conventional methods. In the actual selection of Camellia oleifera fruits, the accuracy was >99.00%, and the average screening time was 0.620 s. Conclusion: The trajectory planning optimization method proposed in the experiment has improved the sorting efficiency, accuracy, and stability of the Camellia oleifera fruit sorting robot.

Publication Date

12-26-2023

First Page

105

Last Page

111

DOI

10.13652/j.spjx.1003.5788.2023.60098

References

[1] 严培培. 面向非典型食品生产的高速机器人分拣系统设计[J]. 食品与机械, 2016, 32(2): 94-97. YAN P P. Design of high speed robot sorting system for atypical food production[J]. Food & Machinery, 2016, 32(2): 94-97.
[2] 胡国喜, 王超, 刘宇珩. 基于改进光滑滑模阻抗控制的水果分拣机械人夹持机构控制方法[J]. 食品与机械, 2021, 37(2): 123-126. HU G X, WANG C, LIU Y H. Control method of fruit sorting robot clamping mechanism based onimproved smooth sliding mode impedance control[J]. Food & Machinery, 2021, 37(2): 123-126.
[3] 张好剑, 苏婷婷, 吴少泓, 等. 基于改进遗传算法的并联机器人分拣路径优化[J]. 华南理工大学学报(自然科学版), 2017, 45(10): 93-99. ZHANG H J, SU T T, WU S H, et al. Sorting path optimization of parallel robot based on improved genetic algorithm[J]. Journal of South China University of Technology (Natural Science Edition), 2017, 45(10): 93-99.
[4] 解则晓, 李斌, 任凭. 基于能量指标的Delta 并联机器人拾放轨迹参数优化及验证[J]. 计算机集成计算系统, 2018, 24(12): 3 073-3 081. XIE Z S, LI B, REN P. Optimization and verification of delta parallel robot pickup and release trajectoryparameters based on energy index[J]. Computer Integrated Computing System, 2018, 24(12): 3 073-3 081.
[5] 章鸿. Delta快速分拣机器人轨迹优化算法研究[J]. 机械设计与制造, 2021, 12(6): 288-295. ZHANG H. Research on trajectory optimization algorithm of Delta rapid sorting robot[J]. Mechanical Design and Manufacturing, 2021, 12(6): 288-295.
[6] 郭俊, 王新. 食品拾放的3-PUU并联机器人轨迹规划[J]. 食品工业, 2021, 42(2): 223-226. GUO J, WANG X. Trajectory planning of 3-PUU parallel robot for food picking and placing[J]. Food Industry, 2021, 42(2): 223-226.
[7] 刘现伟, 颉潭成, 徐彦伟, 等. 基于叠加摆线运动规律的Delta机器人轨迹规划[J]. 制造业自动化, 2021, 43(6): 88-94. LIU X W, JIE T C, XU Y W, et al. Delta robot trajectory planning based on superimposed cycloidal motion laws[J]. Manufacturing Automation, 2021, 43(6): 88-94.
[8] 徐岩. 基于改进引力搜索算法的高速并联机器人轨迹优化[J]. 食品与机械, 2022, 38(5): 82-86. XU Y. Trajectory optimization of high-speed parallel robots based on improved gravity search algorithm[J]. Food & Machinery, 2022, 38(5): 82-86.
[9] 梅江平, 孙玉德, 贺莹, 等. 基于能耗最优的4自由度并联机器人轨迹优化[J]. 机械设计, 2018, 35(7): 82-86. MEI J P, SUN Y D, HE Y, et al. Trajectory optimization of a 4-degree of freedom parallel robot based onoptimal energy consumption[J]. Mechanical Design, 2018, 35(7): 82-86.
[10] 刘现伟, 颉潭成, 徐彦伟, 等. 基于合成运动的Delta机器人轨迹规划[J]. 制造业自动化, 2021, 43(7): 19-23, 47. LIU X W, JIE T C, XU Y W, et al. Delta robot trajectory planning based on synthetic motion[J]. Manufacturing Automation, 2021, 43(7): 19-23, 47.
[11] LI W, XIONG R. A hybrid visual servo control method for simultaneously controlling a nonholonomic mobile and a manipulator[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(2): 141-154.
[12] 史亚贝. 基于DSP的三自由度采摘机械手控制系统研究[J]. 农机化研究, 2022, 12(2): 34-38. SHI Y B. Research on control system of 3-DOF picking manipulator based on DSP[J]. Agricultural Mechanization Research, 2022, 12(2): 34-38.
[13] 李光, 章晓峰, 杨加超, 等. 基于残差BP神经网络的6自由度机器人视觉标定[J]. 农业机械学报, 2021, 52(4): 366-374. LI G, ZHANG X F, YANG J C, et al. Vision calibration of 6-DOF robot based on residual BP neuralnetwork[J]. Journal of Agricultural Machinery, 2021, 52(4): 366-374.
[14] 朱大昌, 盘意华, 杜宝林, 等. 一种并联机器人轨迹规划算法研究[J]. 机床与液压, 2023, 51(5): 14-22. ZHU D C, PAN Y H, DU B L, et al. Research on a trajectory planning algorithm for parallel robots[J]. Machine Tool and Hydraulic, 2023, 51(5): 14-22.
[15] 伍经纹, 徐世许, 王鹏, 等. 基于Adams的三自由度Delta机械手的运动学仿真分析[J]. 软件, 2017, 38(6): 108-112. WU J W, XU S X, WANG P, et al. Kinematics simulation analysis of 3-DOFDelta manipulator based on ADAMS[J]. Software, 2017, 38(6): 108-112.
[16] 张皓宇, 刘晓伟, 任川, 等. 并联机器人正运动学与NURBS轨迹规划[J]. 机械设计与制造, 2021, 12(4): 282-292. ZHANG H Y, LIU X W, REN C, et al. Forward kinematics and NURBS trajectory planning of parallelrobot[J]. Mechanical Design and Manufacturing, 2021, 12(4): 282-292.
[17] 赵利平, 吴德刚. 基于小波与模糊相融合的苹果分级算法[J]. 食品与机械, 2020, 36(4): 142-145. ZHAO L P, WU D G. Apple grading algorithm based on Wavelet and fuzzy fusion[J]. Food & Machinery, 2020, 36(4): 142-145.
[18] AZUMAYA C M, DAYS E L, VINSON P N, et al. Screening for AMPA receptor auxiliary subunit specific modulators[J]. PLoS One, 2017, 12(3): 1 523-1 538.
[19] 贺禹强, 刘故帅, 肖异瑶, 等. 基于改进GA-PSO混合算法的变电站选址优化[J]. 电力系统保护与控制, 2017, 45(23): 143-150. HE Y Q, LIU G S, XIAO YY, et al. Substation location optimization based on improved GA-PSO hybrid algorithm[J]. Power System Protection and Control, 2017, 45(23): 143-150.
[20] 朱光耀. 基于无标定视觉伺服的全向移动机械臂跟踪控制[J]. 电子测量技术, 2020, 43(23): 23-29. ZHU G Y. Tracking control of omnidirectional mobile manipulator based on uncalibrated visual servo[J]. Electronic Measurement Technology, 2020, 43(23): 23-29.
[21] 王志中. 基于改进蚁群算法的移动机器人路径规划研究[J]. 机械设计与制造, 2018, 12(1): 242-244. WANG Z Z. Research on mobile robot path planning based on improved ant colony algorithm[J]. Mechanical Design and Manufacturing, 2018, 12(1): 242-244.
[22] 王曦, 王宗彦, 张宇廷, 等. 基于NSGA-Ⅱ算法的并联机器人多目标轨迹规划[J]. 机械设计与制造工程, 2022, 51(12): 72-77. WANG X, WANG Z Y, ZHANG Y T, et al. Multi objective trajectory planning for parallel robots based on NSGA-II algorithm[J]. Mechanical Design and Manufacturing Engineering, 2022, 51(12): 72-77.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.