•  
  •  
 

Corresponding Author(s)

郭全友(1974—),男,中国水产科学研究院东海水产研究所研究员,博士。E-mail:dhsguoqy@163.com

Abstract

Objective: Investigating the effects of farming region and commercial size on the nutrition and flavor quality of Scophthalmus maximus. Methods: Farming turbot of three regions, namely, Rushan, Haiyang and Suizhong, and two typical commercially available sizes, 450~750 and 750~1 250 g, were selected for this study to compare their nutrient composition and flavor substances. Used principal component analysis and orthogonal partial least squares discriminant analysis to visualize the differences between different groups and to identify the nutritional indicators in differentiate farming region and commercial size. Results: The protein and collagen content of turbot in the Rushan and Haiyang regions were significantly higher than those in the Suizhong region, and the DHA content of the large-size group in Suizhong accounted for 20.97% of the total fatty acid content, which was significantly higher than that of other groups. The muscle bitterness, saltiness and sweetness of turbot in the Suizhong area were significantly higher than those in the Rushan and Haiyang regions, and there were more volatile compounds in the Haiyang region, followed by the Rushan region and the Suizhong region. As for the commercial sizes, the collagen content of the large-size group was significantly higher than that of the small-size group. The volatile substances with higher content in the small-size group included 3-methylbutanal and propan-2-ol, etc., while the volatile substances with higher content in the large-size group included 2-methyl-1-propanol, 2-pinene and tetrahydrofuran, etc. Conclusion: Five indicators of fat, collagen, moisture content, total unsaturated fatty acids and ash were obtained based on the orthogonal partial least squares discriminant analysis to differentiate turbot from different farming regions, and to provide basic data for the evaluation of nutrition and flavor quality of farmed turbot.

Publication Date

12-26-2023

First Page

179

Last Page

185

DOI

10.13652/j.spjx.1003.5788.2023.80333

References

[1] ZHU F L, ZHANG H L, SHAO Y N, et al. Visualization of the chilling storage time for turbot flesh based on hyperspectral imaging technique[J]. Spectroscopy and Spectral Analysis, 2014, 34(7): 1 938-1 942.
[2] 关长涛, 杨正勇, 王启要, 等. 大菱鲆产业发展报告[J]. 中国水产, 2021(1): 22-35. GUAN C T, YANG Z Y, WANG Q Y, et al. Development report of turbot industry[J]. China Fisheries, 2021(1): 22-35.
[3] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2021年中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2021: 22. Fishery Administration Bureau of Ministry of Agriculture and Rural Affairs, National Fisheries Technology Extension Center, China Society of Fisheries. 2021 China fisheries statistics yearbook[M]. Beijing: China Agricultural Press, 2021: 22.
[4] 赵勇, 蒋东丰, 朱克卫, 等. 不同产地进口三文鱼挥发风味物质组成特征研究[J]. 食品安全质量检测学报, 2020, 11(3): 734-744. ZHAO Y, JIANG D F, ZHU K W, et al. Study on the characteristics ofvolatile flavor components of imported salmon from different habitats[J]. Journal of Food Safety & Quality, 2020, 11(3): 734-744.
[5] 韦玲静, 叶香尘, 莫飞龙, 等. 不同规格苏氏圆腹(鱼芒)肌肉营养成分分析[J]. 养殖与饲料, 2020, 19(7): 15-20. WEI L J, YE X C, MO F L, et al. Analysis of nutritional components in muscle of different specifications of Pangasius sutchi[J]. Animals Breeding and Feed, 2020, 19(7): 15-20.
[6] 蔡丽君. 即食泥鳅油炸工艺优化及挥发性气味物质变化规律[D]. 上海: 上海海洋大学, 2022: 44. CAI L J. Optimization of fry technology of ready-to-eat loach and changes of volatile odor substances[D]. Shanghai: Shanghai Ocean University, 2022: 44.
[7] 马美湖, 毕玉芳, 张茂杰, 等. 鸡蛋贮藏期间风味特征的电子感官分析[J]. 现代食品科技, 2015, 31(8): 293-300, 355. MA M H, BI Y F, ZHANG M J, et al. Analysis of egg flavor change during storage period by electronic sensory methods[J]. Modern Food Science and Technology, 2015, 31(8): 293-300, 355.
[8] 陈东杰, 张明岗, 聂小宝, 等. 基于气相离子迁移谱检测静电场处理的大菱鲆品质[J]. 食品科学, 2019, 40(24): 313-319. CHEN D J, ZHANG M G, NIE X B, et al. Quality detection of turbot (Scophtalmus maximus) treated with electrostatic field using gas chromatography-ion mobility spectrometry[J]. Food Science, 2019, 40(24): 313-319.
[9] 贾丽娟. 不同地区稻虾综合种养系统环境因子、肌肉品质的比较分析及产地溯源体系的建立[D]. 上海: 上海海洋大学, 2022: 41-42, 47. JIA L J. Comparison of environmental factors and musclequality in rice-shrimp integrated culture system in different areas and establishment of geographical origin traceability system[D]. Shanghai: Shanghai Ocean University, 2022: 41-42, 47.
[10] 高岳, 林研彤, 侯淑敏, 等. 不同产地和养殖方式的刺参微量元素含量的比较[J]. 大连海洋大学学报, 2014, 29(5): 498-501. GAO Y, LIN Y T, HOU S M, et al. Comparative analysis of trace element contents in sea cucumber (Apostichopus japonicus) from different regions and farming methods[J]. Journal of Dalian Ocean University, 2014, 29(5): 498-501.
[11] CHENG J H, SUN D W, HAN Z, et al. Texture and structure measurements and analyses for evaluation of fish and fillet freshness quality: A review[J]. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(1): 52-61.
[12] TORRIS C, SMASTUEN M C, MOLIN M. Nutrients in fish and possible associations with cardiovascular disease risk factors in metabolic syndrome[J]. Nutrients, 2018, 10(7): 952.
[13] 王煜坤, 郝淑贤, 李来好, 等. 不同地区、品种及养殖模式罗非鱼营养差异分析[J]. 食品工业科技, 2018, 39(12): 231-237. WANG Y K, HAO S X, LI L H, et al. Analysison nutrition difference of tilapia in different regions, species and breeding pattern[J]. Science and Technology of Food Industry, 2018, 39(12): 231-237.
[14] 郭亚男, 胡园, 韩刚, 等. 两种不同产地养殖三疣梭子蟹肌肉中营养成分比较[J]. 中国食物与营养, 2020, 26(12): 45-50. GUO Y N, HU Y, HAN G, et al. Comparative analysis on nutritional components in muscle of cultured Portunus trituberculatus from different areas[J]. Food and Nutrition in China, 2020, 26(12): 45-50.
[15] BROOKS J C, SAVELL J W. Perimysium thickness as an indicator of beef tenderness[J]. Meat Science, 2004, 67(2): 329-334.
[16] 郑海波. 中华绒螯蟹的品质分析与比较[D]. 无锡: 江南大学, 2008: 24-27. ZHENG H B. Analysis and comparison of the quality of Chinese mitten crab[D]. Wuxi: Jiangnan University, 2008: 24-27.
[17] 于双, 姜淼, 桑雪, 等. 大连不同产地刺参营养成分分析与评价[J]. 中国食品添加剂, 2022, 33(4): 188-195. YU S, JIANG M, SANG X, et al. Analysis and evaluation of nutrient components of sea cucumber from different places in Dalian[J]. China Food Additives, 2022, 33(4): 188-195.
[18] 谢全森, 蔡灵, 孙彩娟, 等. 不同生长阶段的生态养殖台湾鳗鳅的营养特性研究[J]. 食品研究与开发, 2019, 40(15): 36-42. XIE Q S, CAI L, SUN C J, et al. Nutritional quality of ecological breeding Taiwan Paracobitis anguillioid with different growth phase[J]. Food Research and Development, 2019, 40(15): 36-42.
[19] 谢辉, 尹明雨, 张玉非, 等. 不同产地雌性中华绒螯蟹感官品质与滋味品质的差异性[J]. 食品与发酵工业, 2021, 47(6): 114-120, 126. XIE H, YIN M Y, ZHANG Y F, et al. The effect of different culturing region on the sensory and taste quality of Chinese mitten crab (Eriocheir sinensis) [J]. Food and Fermentation Industries, 2021, 47(6): 114-120, 126.
[20] 张秀洁, 郭全友, 王鲁民, 等. 养殖大黄鱼滋味和气味物质组成及评价[J]. 食品与发酵工业, 2019, 45(20): 242-249. ZHANG X J, GUO Q Y, WANG L M, et al. Composition and evaluation of flavor substances in the cultured large yellow croaker (Larimichthys crocea) [J]. Food and Fermentation Industries, 2019, 45(20): 242-249.
[21] GUO Y R, GU S Q, WANG X C, et al. Comparison of fatty acid and amino acid profiles of steamed Chinese mitten crab[J]. Fisheries Science, 2014, 80(3): 621-633.
[22] 崔保威, 欧阳远鑫, 马杨柳, 等. 不同产地秀丽白虾干风味物质GC-IMS指纹图谱分析[J]. 食品工业, 2022, 43(7): 311-315. CUI B W, OUYANG Y X, MA Y L, et al. Fingerprint analysis of volatile flavor compounds of dried Exopalaemon modestus from different habitats based on gas chromatography-ion mobility spectroscopy[J]. The Food Industry, 2022, 43(7): 311-315.
[23] WANG F, GAO Y Q, WANG H B, et al. Analysis of volatile compounds and flavor fingerprint in Jingyuan lamb of different ages using gas chromatography-ion mobility spectrometry (GC-IMS)[J]. Meat Science, 2021, 175: 108449.
[24] 张乐, 张雅, 史冠莹, 等. GC-IMS结合化学计量学分析8个产区香椿挥发性成分差异[J]. 食品科学, 2022, 43(22): 301-308. ZHANG L, ZHANG Y, SHI G Y, et al. Differences in volatile organic compounds of Toona sinensis from eight production regions analyzed by gas chromatography-ion mobility spectrometry combined with chemometrics[J]. Food Science, 2022, 43(22): 301-308.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.