•  
  •  
 

Authors

YU Ming, Department of Food and Environmental Engineering, Yangjiang Polytechnic, Yangjiang, Guangdong 529566, China; Guangdong Provincial Engineering and Technology Research Center of Food Low Temperature Pocessing of Guangdong Provice, Yangjiang, Guangdong 529566, China; Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang 314006, ChinaFollow
XU Li-juan, School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
CHEN Hai-qing, Department of Food and Environmental Engineering, Yangjiang Polytechnic, Yangjiang, Guangdong 529566, China; Guangdong Provincial Engineering and Technology Research Center of Food Low Temperature Pocessing of Guangdong Provice, Yangjiang, Guangdong 529566, China
LIANG Zuan-hao, Department of Food and Environmental Engineering, Yangjiang Polytechnic, Yangjiang, Guangdong 529566, China; Guangdong Provincial Engineering and Technology Research Center of Food Low Temperature Pocessing of Guangdong Provice, Yangjiang, Guangdong 529566, China
CHEN Shan-shan, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang 314006, China
LIANG Feng-xue, Department of Food and Environmental Engineering, Yangjiang Polytechnic, Yangjiang, Guangdong 529566, China; Guangdong Provincial Engineering and Technology Research Center of Food Low Temperature Pocessing of Guangdong Provice, Yangjiang, Guangdong 529566, China
AO Fei-fei, Department of Food and Environmental Engineering, Yangjiang Polytechnic, Yangjiang, Guangdong 529566, China; Guangdong Provincial Engineering and Technology Research Center of Food Low Temperature Pocessing of Guangdong Provice, Yangjiang, Guangdong 529566, China

Abstract

Objective: This study aimed to explore the feasibility of low-frequency electric field assisted controlled freezing-point storage (CFPS) technology improving the quality of shrimp. Methods: Low-frequency electric field was applied on the basis of controlled freezing-point storage (LFEF+CFPS) to preserve prawns, and the contents of malondialdehyde and salt soluble protein, as well as the changes of Ca2+-ATPase activity, pH value, shear force, color difference and protein molecular weight of prawns were monitored. Results: Compared with the conventional CFPS, the LFEF+CFPS had no significant effect on the content of malondialdehyde, salt-soluble protein, pH, shear force and color of prawn meat. However, after 3 days of storage, LFEF + CFPS treatment significantly inhibit the decrease of Ca2+-ATPase activity, and the Ca2+-ATPase activity of LFEF+CFPS treatment group stored for 15 days was 2.20 times that of the CFPS treatment group. In addition, LFEF + CFPS treatment significantly inhibited the decrease in the density of myosin heavy chain, actin and tropomyosin bands. Conclusion: Compared with conventional CFPS treatment, LFEF + CFPS treatment significantly inhibited the decrease of Ca2+-ATPase activity and protein degradation, maintained the stability of protein structure and properties, and slowed down the deterioration of prawn meat quality.

Publication Date

4-25-2023

First Page

122

Last Page

127

DOI

10.13652/j.spjx.1003.5788.2022.90253

References

[1] 侯博玉, 万金庆, 徐鸣, 等. 黑鱼香肠冰温贮藏期品质的变化[J]. 食品与机械, 2022, 38(8): 136-143, 221.
[2] 岑剑伟. 冰温气调结合高压静电场对罗非鱼片保鲜及其机理研究[D]. 广州: 华南农业大学, 2016.
[3] 张珊, 林慧敏, 邓尚贵. 低压静电场对凡纳滨对虾保鲜效果的研究[J]. 食品科技, 2020, 45(10): 141-147.
[4] 张亚瑾, 焦阳. 冷冻和解冻技术在水产品中的应用研究进展[J]. 食品与机械, 2021, 37(1): 215-221, 236.
[5] OKUDA K, KAWAUCHI A, YOMOGIDA K. Data of the freezing curves of tuna blocks with or without the weak oscillating magnetic fields[J]. Data in Brief, 2020, 31: 105852.
[6] TIAN Y, CHEN Z, ZHU Z, et al. Effects of tissue pre-degassing followed by ultrasound-assisted freezing on freezing efficiency and quality attributes of radishes[J]. Ultrasonics Sonochemistry, 2020, 67: 105162.
[7] ASTRAIN-REDIN L, ABAD J, RIEDER A, et al. Direct contact ultrasound assisted freezing of chicken breast samples[J]. Ultrasonics Sonochemistry, 2021, 70: 105319.
[8] SADOT M, CURET S, CHEVALLIER S, et al. Microwave assisted freezing part 2: Impact of microwave energy and duty cycle on ice crystal size distribution[J]. Innovative Food Science & Emerging Technologies, 2020, 62: 102359.
[9] JHA P K, CHEVALLIER S, XANTHAKIS E, et al. Effect of innovative microwave assisted freezing (MAF) on the quality attributes of apples and potatoes[J]. Food Chemistry, 2020, 309: 125594.
[10] 甄仌, 苏格毅, 张雪, 等. 静电场对冷冻食品冰晶生长影响的相场法模拟[J]. 食品与机械, 2022, 38(2): 143-147.
[11] 庞小峰. 生物电磁学[M]. 北京: 国防工业出版社, 2008: 66.
[12] 余铭. 低频交变电场发生装置及系统: CN201720224494.0[P]. 2017-09-29.
[13] 郭芳, 周铭懿, 张抒爱, 等. 冰温技术结合生物保鲜剂对中国对虾品质的影响[J]. 食品工业科技, 2020, 41(15): 274-280.
[14] RAHMAN M S, DRISCOLL R H. Freezing points of selected seafoods (invertebrates)[J]. International Journal of Food Science & Technology, 1994, 29(1): 51-61.
[15] 王杏娣, 谢超, 梁瑞萍, 等. 低压静电场处理对竹节虾(Penaeus japonicus)微冻贮藏过程中品质的影响[J]. 食品工业科技, 2020, 41(7): 1-12.
[16] 梁钻好, 陈海强, 梁凤雪, 等. 液浸速冻对牡蛎水分迁移及品质的影响[J]. 食品科学, 2019, 40(23): 233-238.
[17] 梁钻好, 陈海强, 梁凤雪, 等. 基于水分迁移分析热风—热泵联合干燥对虾肉品质的影响[J]. 食品与发酵工业, 2022, 48(22): 134-141.
[18] CHEN H Q, ZHOU A M, BENJAKUL S, et al. The mechanism of low-level pressure coupled with heat treatment on water migration and gel properties of Nemipterus virgatus surimi[J]. LWT-Food Science and Technology, 2020, 150: 112086.
[19] ERSOY B, AKSAN E, ZEREN A. The effect of thawing methods on the quality of eels (Anguilla anguilla)[J]. Food Chemistry, 2008, 111(2): 377-380.
[20] 刘欣荣. 不同贮藏方式对红鳍东方鲀品质的影响研究[D]. 保定: 河北农业大学, 2020.
[21] 郑静静. 冷冻加工对小龙虾品质影响的研究[D]. 合肥: 合肥工业大学, 2020: 11-15.
[22] 张龙腾, 吕健, 李清正, 等. 鲢鱼片在微冻贮藏中品质、ATP关联物及关联酶活性变化规律研究[J]. 中国农业大学学报, 2016, 21(11): 77-83.
[23] 余璐涵, 陈旭, 蔡茜茜, 等. 鱼糜蛋白冷冻变性规律及调控方法研究进展[J]. 食品与机械, 2020, 36(8): 1-8.
[24] 黄艺, 李丹丹, 杨哪, 等. 电场处理对酶活力的影响[J]. 中国食品学报, 2021, 21(11): 377-388.
[25] WOO M W, MUJUMDAR A S. Effects of electric and magnetic field on freezing and possible relevance in freeze drying[J]. Drying Technology, 2010, 28(4): 433-443.
[26] 尚柯, 杨方威, 李侠, 等. 静电场辅助冻结—解冻对肌肉保水性及蛋白理化特性的影响[J]. 食品科学, 2018, 39(3): 157-162.
[27] 陈赛, 刘永乐, 俞健, 等. 壳聚糖复合保鲜对草鱼肌肉蛋白质变化的影响[J]. 食品科学, 2019, 40(11): 207-212.
[28] 黄昊, 何涓源, 赖思婷, 等. 复配天然保鲜剂对青虾冷藏保鲜效果的影响[J]. 保鲜于加工, 2021, 21(8): 15-20.
[29] 谢晶, 程浩. 冻藏水产品蛋白质变化与控制措施研究进展[J]. 上海海洋大学学报, 2021, 30(5): 905-912.
[30] 段伟文, 全沁果, 高静, 等. 低压静电场结合气调包装对凡纳滨对虾冰温贮藏期品质的影响[J]. 食品科学, 2019, 40(13): 252-259.
[31] ZHANG Y, ERTBJERG P. On the origin of thaw loss: Relationship between freezing rate and protein denaturation[J]. Food Chemistry, 2019, 299(30): 125104.
[32] LEYGONIE C, BRITZ T J, HOFFMAN L C. Impact of freezing and thawing on the quality of meat: Review[J]. Meat Science, 2012, 91(2): 93-98.
[33] ERTBJERG P, PUOLANNE E. Muscle structure, sarcomere length and influences on meat quality: A review[J]. Meat Science, 2017, 132: 139-152.
[34] CHAN J T Y, OMANA D A, BETTI M. Effect of ultimate pH and freezing on the biochemical properties of proteins in turkey breast meat[J]. Food Chemistry, 2011, 127(1): 109-117.
[35] 汤夕瑶, 张旭飞, 任惠峰, 等. 冷藏过程中凡纳滨对虾颜色变化与鲜度指标间的相关性研究[J]. 食品与发酵工业, 2022, 48(9): 170-178.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.