•  
  •  
 

Corresponding Author(s)

石启龙(1974—),男,山东理工大学教授,博士。E-mail: qilongshi@sdut.edu.cn

Abstract

Objective: The objective of this study was to develop high-quality non-fried whole shiitake (Lentinus edodes) crisps due to having high oil content of vacuum fried L. edodes crisps which inevitably pose health risks after long-term use. Methods: Based on uniform design, instant controlled pressure drop (DIC) was used to investigate the influences of moisture content after heat pump pre-drying, puffing temperature and vacuum drying temperature on the puffing degree, rehydration ratio, total color difference, hardness and crispness of L. edodes crisps. The polynomial regression model was established by using a weighted comprehensive score method, and it was optimized and verified accordingly. Results: The optimum parameter combinations of L. crisps during DIC processing were moisture content after heat pump pre-drying of 35.63%, puffing temperature of 100 ℃, vacuum drying temperature of 64.17 ℃. Under the control of these optimal parameter combinations, the puffing degree of L. crisps was 69.34%, total color difference was 20.68, hardness was 108.16 N, and crispness was 75.79. Conclusion: Uniform design combined with response surface methodology can be used to optimize processing parameters of DIC crisps and obtain high quality non-fried L. crisps.

Publication Date

10-20-2023

First Page

193

Last Page

201

DOI

10.13652/j.spjx.1003.5788.2022.81183

References

[1] 陈静, 唐浩国, 王嘉康, 等. 香菇酱研究进展[J]. 食品与机械, 2022, 38(11): 225-229. CHEN J, TANG H G, WANG J K, et al. Research progress of mushroom sauce[J]. Food & Machinery, 2022, 38(11): 225-229.
[2] 张越翔, 刘静, 吴小恬, 等. 食用菌干燥技术研究进展[J]. 中国果菜, 2022, 42(1): 24-33. ZHANG Y X, LIU J, WU X T, et al. Research process on drying technology of edible fungus[J]. Chinese Fruits & Vegetables, 2022, 42(1): 24-33.
[3] 武旭瑶, 马有川, 黄文英, 等. 热风干燥过程中果蔬片脆性变化规律[J]. 食品与机械, 2022, 38(9): 22-28. WU X Y, MA Y C, HUANG W Y, et al. Variation of food brittleness of the fruit and vegetable slices during hot air drying process[J]. Food & Machinery, 2022, 38(9): 22-28.
[4] 任爱清, 邓珊, 唐小闲, 等. 香菇脆片真空油炸—真空微波联合干燥工艺优化[J]. 食品与机械, 2020, 36(10): 165-170. REN A Q, DENG S, TANG X X, et al. Process optimization of vacuum-frying combined vacuum-microwave drying in producing shiitake mushroom chips[J]. Food & Machinery, 2020, 36(10): 165-170.
[5] 曹晶晶, 罗晓莉, 何容, 等. 真空油炸食用菌脆片低含油率加工技术[J]. 中国食用菌, 2022, 41(1): 67-69, 75. CAO J J, LUO X L, HE R, et al. Processing technology of vacuum fried edible fungi chips with low oil content[J]. Edible Fungi of China, 2022, 41(1): 67-69, 75.
[6] 高兴洋, 安辛欣, 赵立艳, 等. 真空低温油炸和真空冷冻干燥对香菇脆片品质及挥发性风味成分的影响[J]. 食品科学, 2015, 36(17): 88-93. GAO X X, AN X X, ZHAO L Y, et al. Effects of vacuum frying versus freeze drying on quality and volatile components of shiitake (Lentinula edodes) chips[J]. Food Science, 2015, 36(17): 88-93.
[7] 金玮玲, 高虹, 范秀芝, 等. 不同预处理方法对真空冷冻干燥香菇脆片感官品质的影响[J]. 食品科学, 2017, 38(13): 108-112. JIN W L, GAO H, FAN X Z, et al. Effect of different pretreatment methods on the sensory quality of Lentinus edodes chips produced by vacuum freeze-drying[J]. Food Science, 2017, 38(13): 108-112.
[8] 刘秀凤, 蔡金星, 徐瑞萍. 微波膨化香菇工艺优化[J]. 河北科技师范学院学报, 2012, 26(1): 61-64. LIU X F, CAI J X, XU R P. Optimization of microwave-puffing Lentinula edodes[J]. Journal of Hebei Normal University of Science & Technology, 2012, 26(1): 61-64.
[9] 刘增强, 丁文平, 庄坤, 等. 香菇脆片加工技术的研究进展[J]. 食品工业科技, 2018, 39(6): 345-349. LIU Z Q, DING W P, ZHUANG K, et al. Research progress in processing technology of Lentinus edodes chips[J]. Science and Technology of Food Industry, 2018, 39(6): 345-349.
[10] 段续, 徐一铭, 任广跃, 等. 香菇分段变温红外喷动床干燥工艺参数优化[J]. 农业工程学报, 2021, 37(19): 293-302. DUAN X, XU Y M, REN G Y, et al. Optimization of the drying process parameters for Lentinus edodes in segment variable temperature infrared assisted spouted bed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(19): 293-302.
[11] 毕金峰, 胡丽娜, 吕健, 等. 压差闪蒸联合干燥技术与动态优化策略研究进展[J]. 食品科学技术学报, 2022, 40(1): 1-10. BI J F, HU L N, LU J, et al. Research advance of instant controlled pressure drop combined drying technology and dynamic optimization strategy[J]. Journal of Food Science and Technology, 2022, 40(1): 1-10.
[12] ZHOU L Y, WANG X Y, BI J F, et al. Effect of different moisture equilibration process on the quality of apple chips dried by instant controlled pressure drop (dic)-assisted hot air drying[J]. Journal of Food Processing and Preservation, 2018, 42(1): e13316.
[13] LI X, BI J F, CHEN Q Q, et al. Texture improvement and deformation inhibition of hot air-dried apple cubes via osmotic pretreatment coupled with instant control pressure drop (DIC)[J]. LWT-Food Science and Technology, 2019, 101: 351-359.
[14] GUO J, LIU C J, LI Y, et al. Effect of sucrose and citric acid on the quality of explosion puffing dried yellow peach slices[J]. Drying Technology, 2022, 40(13): 2 783-2 793.
[15] SONG H H, BI J F, CHEN Q Q, et al. Structural and health functionality of dried goji berries as affected by coupled dewaxing pre-treatment and hybdrid drying methods[J]. International Journal of Food Properties, 2018, 21(1): 2 527-2 538.
[16] PENG J, YI J Y, BI J F, et al. Freezing as pretreatment in instant controlled pressure drop (DIC) texturing of dried carrot chips: Impact of freezing temperature[J]. LWT-Food Science and Technology, 2018, 89: 365-373.
[17] XU Y Y, LANG X M, XIAO Y D, et al. Study on drying efficiency, uniformity, and physicochemical characteristics of carrot by tunnel microwave drying combined with explosion puffing drying[J]. Drying Technology, 2022, 40(2): 416-429.
[18] XUE Y L, CHEN J N, HAN H T, et al. Multivariate analysis of the physicochemical properties of turnip (Brassica rapa L.) chips dried using different methods[J]. Drying Technology, 2020, 38(4): 411-419.
[19] KPRALAN , ALTAY , BODRUK A, et al. Effect of hybrid drying method on physical, textural and antioxidant properties of pumpkin chips[J]. Journal of Food Measurement and Characterization, 2021, 15: 2 995-3 004.
[20] GAO Q, CHEN J N, ZHANG J C, et al. Comparison of explosion puffing drying with other methods on the physicochemical properties and volatiles of yam (Dioscorea opposita thunb.) chips through multivariate analysis[J]. Drying Technology, 2022, 40(7): 1 405-1 420.
[21] 刘增强, 邓林爽, 丁文平, 等. 变温压差膨化干燥香菇脆片的工艺研究[J]. 食品工业科技, 2018, 39(20): 186-193, 199. LIU Z Q, DENG L S, DING W P, et al. Optimization of varying temperature and pressure puffing for Lentinus edodes chips[J]. Science and Technology of Food Industry, 2018, 39(20): 186-193, 199.
[22] 郭玲玲, 周林燕, 毕金峰, 等. 香菇中短波红外—脉动压差闪蒸联合干燥工艺研究[J]. 中国食品学报, 2018, 18(2): 155-165. GUO L L, ZHOU L Y, BI J F, et al. Studies on dry technics of shiitake mushroom using pulsed sudden decompression flashing drying and medium-shortwave infrared radiation[J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(2): 155-165.
[23] 朱凯阳, 任广跃, 段续, 等. 红外辐射技术在农产品干燥中的应用[J]. 食品与发酵工业, 2021, 47(20): 303-311. ZHU K Y, REN G Y, DUAN X, et al. Application of infrared radiation technology in drying of agricultural products[J]. Food and Fermentation Industry, 2021, 47(20): 303-311.
[24] 赵亚, 朱智壮, 石启龙, 等. 成膜预处理提高扇贝柱超声波辅助热泵干燥效率及品质[J]. 农业工程学报, 2022, 38(18): 274-283. ZHAO Y, ZHU Z Z, SHI Q L, et al. Coating pretreatment improved drying efficiency and quality attributes of ultrasonic assisted heat pump dried scallop adductors[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(18): 274-283.
[25] 高鹤, 易建勇, 毕金峰, 等. 番木瓜真空冷冻联合变温压差膨化干燥工艺优化[J]. 中国食品学报, 2016, 16(7): 156-163. GAO H, YI J Y, BI J F, et al. Optimization of the vacuum freeze combined explosion puffing drying for papaya[J]. Journal of the Chinese Institute of Food Science and Technology, 2016, 16(7): 156-163.
[26] 宋一凡, 陈海峰, 袁越锦. 猕猴桃CO2—低温高压渗透膨化干燥工艺优化[J]. 食品科学, 2020, 41(4): 229-234. SONG Y F, CHEN H F, YUAN Y J. Optimization of CO2-low temperature high pressure permeation drying process of kiwifruit[J]. Food Science, 2020, 41(4): 229-234.
[27] YI J Y, HOU C H, BI J F, et al. Novel combined freeze-drying and instant controlled pressure drop drying for restructured carrot-potato chips: Optimized by response surface method[J]. Journal of Food Quality, 2018, 2 018: 6157697.
[28] SONG J F, GONZALLES G, LIU J, et al. Optimization of explosion puffing drying for high-value yellow-fleshed peach crisps using response surface methodology[J]. Drying Technology, 2019, 37(8): 929-940.
[29] YUAN Y J, ZHAO Z, WANG L, et al. Process optimization of CO2 high-pressure and low-temperature explosion puffing drying for apple chips using response surface methodology[J]. Drying Technology, 2022, 40(1): 100-115.
[30] SUI X L, ZHAO Y, ZHANG X, et al. Hydrocolloid coating pretreatment makes explosion puffing drying applicable in protein-rich foods: A case study of scallop adductors[J]. Drying Technology, 2022, 40(1): 50-64.
[31] 屈展平, 张小燕, 宋淑亚, 等. 变异系数法评价预处理方式对黄秋葵热风干燥品质特性的影响[J]. 食品与机械, 2022, 38(4): 150-155. QU Z P, ZHANG X Y, SONG S Y, et al. Evaluation of the influence of pretreatment methods on the quality characteristics of okra hot-air drying based on the coefficient of variation method[J]. Food & Machinery, 2022, 38(4): 150-155.
[32] 孟迪, 党斌, 张杰, 等. 干燥方法对黄蘑菇品质及微观结构的影响[J]. 食品与机械, 2022, 38(10): 139-145. MENG D, DANG B, ZHANG J, et al. Effects of drying methods on the quality and microstructure of Armillaria luteo-virens[J]. Food & Machinery, 2022, 38(10): 139-145.
[33] 王纯, 戴艳军, 孙玥, 等. 不同品种菌菇加工脆片适宜性评价[J]. 食品与机械, 2021, 37(4): 171-175, 238. WANG C, DAI Y J, SUN Y, et al. Suitability evaluation for processing chips from different mushroom varieties[J]. Food & Machinery, 2021, 37(4): 171-175, 238.
[34] 刘丽娜, 王安建, 田广瑞, 等. 响应面法优化香菇柄变温压差膨化干燥工艺[J]. 食品工业科技, 2016, 37(15): 198-202, 208. LIU L N, WANG A J, TIAN G R, et al. Optimization of explosion puffing drying process at variable temperature and pressure for mushroom stem by response surface methodology[J]. Science and Technology of Food Industry, 2016, 37(15): 198-202, 208.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.