•  
  •  
 

Corresponding Author(s)

孙二娜(1989—),女,蒙牛高科乳制品(北京)有限责任公司高级工程师,博士。E-mail: sunerna@mengniu.cn吴子健(1973—),男,天津商业大学教授,博士。E-mail:wzjian@tjcu.edu.cn

Abstract

Post-acidification is one of the most important factors affecting the sensory quality, flavor characteristics and stability of yogurt during shelf-life. Non-thermal treatments are novel methods to control post-acidification, which can maintain the original nutritional properties and sensory quality of food to the maximum extent. In this paper, the mechanism of post-acidification of lactic acid bacteria was reviewed. The mechanism and recent research progress of non-heat treatment processes such as ultra-high pressure, ultrasound, pulsed electric field, CO2 treatment, irradiation were analyzed and provided theoretical guidance for the development and industrial application of non-heat acid control technology.

Publication Date

10-20-2023

First Page

234

Last Page

240

DOI

10.13652/j.spjx.1003.5788.2023.80120

References

[1] O'MAHONY L, O'SHEA E, O'CONNOR E M, et al. Older adults and healthcare professionals have limited awareness of the link between the Mediterranean diet and the gut microbiome for healthy aging[J]. Frontiers in Nutrition (Lausanne), 2023, 10: 1104238.
[2] KONG C, LI Z, MAO Y, et al. Probiotic yogurt blunts the increase of blood pressure in spontaneously hypertensive rats via remodeling of the gut microbiota[J]. Food & Function, 2021, 12(20): 9 773-9 783.
[3] 段云峰, 蔡峰, 律娜, 等. 益生菌促进胃肠道健康的机制及应用[J]. 微生物学报, 2022, 62(3): 836-847. DUAN Y F, CAI F, LU N, et al. The mechanism and application of probiotics in promoting gastrointestinal health[J]. Acta Microbiologica Sinica, 2022, 62(3): 836-847.
[4] 陈家伦, 张万祥, 甘聃. 益生菌组合物对慢传输型便秘的改善作用[J]. 食品与发酵工业, 2022, 48(11): 95-100. CHEN J L, ZHANG W X, GAN D. Alleviation of slow transit constipation by probiotics complex[J]. Food and Fermentation Industries, 2022, 48(11): 95-100.
[5] LIU X R. Gut microbiota alterations from different Lactobacillus probiotic-fermented yoghurt treatments in slow-transit constipation[J]. Journal of Functional Foods, 2017, 38: 110-118.
[6] 黎雨晴, 汪泽坤, 杨恩东, 等. 单一或复合益生菌对小鼠免疫机能的影响[J]. 生物化工, 2022, 8(3): 19-23. LI Y Q, WANG Z K, YANG E D, et al. Effects of single and multiple strains of probiotics on immune function of mice[J]. Biological Chemical Engineering, 2022, 8(3): 19-23.
[7] MAZZIOTTA C, TOGNON M, MARTINI F, et al. Probiotics mechanism of action on immune cells and beneficial effects on human health[J]. Cells, 2023, 12(1): 184.
[8] DI MARTINO L, OSME A, GHANNOUM M, et al. A novel probiotic combination ameliorates crohn's disease-like ileitis by increasing short-chain fatty acid production and modulating essential adaptive immune pathways[J/OL]. Inflammatory Bowel Diseases. (2023-01-28) [2023-02-04]. https://doi.org/10.1093/ibd/izac284.
[9] GUAN C, CHEN X, ZHAO R, et al. A weak post-acidification Lactobacillus helveticus UV mutant with improved textural properties[J]. Food Sci Nutr, 2021, 9(1): 469-479.
[10] 王蕾, 王赛. 基于模糊层次分析法的我国乳制品冷链物流发展影响因素分析[J]. 黑龙江畜牧兽医, 2022(10): 1-8. WANG L, WANG S. Analysis of influencing factors on cold chain logistics of dairy products in China based on FAHP method[J]. Heilongjiang Animal Science and Veterinary Medicine, 2022(10): 1-8.
[11] 张小涛, 章伟锋. 山竹风味酸乳研制及其后酸化的防治措施研究[J]. 食品科技, 2020, 45(5): 36-42. ZHANG X T, ZHANG W F. Preparation, evaluation and control measures of post-acidifi cation of mangosteen fruit yogurt[J]. Food Science and Technology, 2020, 45(5): 36-42.
[12] 那治国, 高悦露, 唐敬思, 等. 蓝靛果花青素对乳酸菌生长及酸奶后酸化的影响[J]. 中国酿造, 2020, 39(11): 147-152. NA Z G, GAO Y L, TANG J S, et al. Effect of anthocyanin from Lonicera caerulea on lactic acid bacteria growth and yoghurt post-acidification[J]. China Brewing, 2020, 39(11): 147-152.
[13] BAI X, HAN M, YUE T, et al. Control of post-acidification and shelf-life prediction of apple juice fermented by lactobacillus[J]. Food Control, 2022, 139: 109076.
[14] YUE Y, WANG S, LU X, et al. Analysis of the complete genome sequence of Lactobacillus delbrueckii ssp. bulgaricus with post-acidification capacity and its influence on yogurt in storage[J]. Journal of Dairy Science, 2021, 105(2): 1 058-1 071.
[15] 纪小敏, 王婷婷, 王宗继, 等. 壳寡糖对酸乳后酸化及贮藏稳定性的影响[J]. 中国乳品工业, 2016, 44(6): 4-7. JI X M, WANG T T, WANG Z J, et al. Effect of chitooligosaccharide addition on postacidification and storage stability of yogurt[J]. China Dairy Industry, 2016, 44(6): 4-7.
[16] 付红岩, 姚晶, 金惠玉, 等. 壳寡糖功能性绿茶酸奶的研制[J]. 食品工业科技, 2013, 34(14): 220-223. FU H Y, YAO J, JIN H Y, et al. Study on chito-oligosaccharide function green tea yoghurt[J]. Science and Technology of Food Industry, 2013, 34(14): 220-223.
[17] ZHANG S, LI D Y, ZHANG X, et al. Global transcriptomic analysis of Lactobacillus delbrueckii subsp. bulgaricus ATCC11842 reveals the role of LDB_RS05285 in the post-acidification of yogurt[J]. Food & Function, 2021, 12(19): 9 077-9 086.
[18] 王成凤, 李柏良, 岳莹雪, 等. 弱后酸化保加利亚乳杆菌KLDS1.1011的筛选及其全基因组注释研究[J]. 食品工业科技, 2021, 42(6): 103-110. WANG C F, LI B L, YUE Y X, et al. Screening of a weakly post-acidified Lactobacillus bulgaricus KLDS1.1011 and its genome-wide annotation[J]. Science and Technology of Food Industry, 2021, 42(6): 103-110.
[19] ZHANG C, YANG L, GU R, et al. Mild heat stress limited the post-acidification caused by Lactobacillus rhamnosus hsryfm 1301 in fermented milk[J]. Biotechnology Letters, 2019, 41(4/5): 633-639.
[20] 杨新尧, 康志远. 后热处理工艺对酸奶贮藏过程中后酸化控制的影响[J]. 中国乳品工业, 2019, 47(8): 58-60. YANG X Y, KANG Z Y. Effect of heat treatment on yoghurt post acidification control during shelf life[J]. China Dairy Industry, 2019, 47(8): 58-60.
[21] ROUTRAY W, MISHRA H N. Scientific and technical aspects of yogurt aroma and taste: A review[J]. Comprehensive Reviews in Food Science and Food Safety, 2011, 10(4): 208-220.
[22] SUN H X, MASUDA F, KAWAMURA S, et al. Effect of electric current of ohmic heating on nonthermal injury to Streptococcus thermophilus in milk[J]. Journal of Food Process Engineering, 2011, 34: 878-892.
[23] PEREIRA R N, TEIXEIRA J A, VICENTE A A, et al. Ohmic Heating for the dairy industry: A potential technology to develop probiotic dairy foods in association with modifications of whey protein structure[J]. Current Opinion in Food Science, 2018, 22: 95-101.
[24] SIEFARTH C, TRAN T B, MITTERMAIER P, et al. Effect of radio frequency heating on yoghurt, I: Technological applicability, shelf-life and sensorial quality[J]. Foods, 2014, 3(2): 318-335.
[25] 刘飞, 焦月华, 郭文奎, 等. 弱后酸化保加利亚乳杆菌突变株与亲本菌株H+-ATPase基因的相似性比较[J]. 食品工业科技, 2013, 34(15): 127-130. LIU F, JIAO Y H, GUO W K, et al. Comparison of similarity of H+-ATPase coding gene between wild strain and mutant strain with low post-acidification of Lactobacillus delbrueckii subsp. bulgaricus[J]. Science and Technology of Food Industry, 2013, 34(15): 127-130.
[26] KASHKET E R. Stoichiometry of the H+-ATPase of Escherichia coli cells during anaerobic growth[J]. Febs Letters, 1983, 154(2): 343-346.
[27] 周虹瑾, 霍向东, 赵丹, 等. 常压室温等离子体诱变选育抗后酸化的乳酸菌[J]. 食品与发酵工业, 2021, 47(23): 112-117. ZHOU H J, HUO X D, ZHAO D, et al. Screening of lactic acid bacteria with anti-postacidification by atmospheric and room temperature plasma mutagenesis[J]. Food and Fermentation Industries, 2021, 47(23): 112-117.
[28] 宋菲菲, 林凯, 蔡婷, 等. 弱化F1F0-ATP酶植物乳杆菌的突变分析及其作为益生添加物在四川泡菜中的应用探索[J]. 西华大学学报(自然科学版), 2015, 34(5): 97-102. SONG F F, LIN K, CAI T, et al. Reduced F1F0-ATPase mutation analysis of lactobacillus plantarum and its application in Sichuan pickle as probiotics adjunct[J]. Journal of Xihua University (Natural Science), 2015, 34(5): 97-102.
[29] 黄俊, 张祥, 尤玉如, 等. 酸奶后酸化控制措施的研究进展[J]. 微生物学通报, 2016, 43(3): 663-670. HUANG J, ZHANG X, YOU Y R, et al. Advances in controlling post-acidification in yogurt[J]. Microbiology China, 2016, 43(3): 663-670.
[30] BEGOA D A, M P C, ROSARIO G. Characteristics of stirred low-fat yoghurt as affected by high pressure[J]. International Dairy Journal, 2000, 10(1/2): 105-111.
[31] TANAKA T, HATANAKA K. Application of hydrostatic pressure to yoghurt to prevent its after-acidification[J]. Journal of the Japanese Society for Food Science & Technology, 1992, 39(2): 173-177.
[32] JANKOWSKA A, WISNIEWSKA K, REPS A. Application of probiotic bacteria in production of yoghurt preserved under high pressure[J]. High Pressure Research, 2005, 25(1): 57-62.
[33] RACIOPPO A, CORBO M R, PICCOLI C, et al. Ultrasound attenuation of lactobacilli and bifidobacteria: Effect on some technological and probiotic properties[J]. International Journal of Food Microbiology, 2017, 243: 78-83.
[34] BEVILACQUA A, CASANOVA F P, PETRUZZI L, et al. Using physical approaches for the attenuation of lactic acid bacteria in an organic rice beverage[J]. Food Microbiology, 2016, 53: 1-8.
[35] ERKAYA T, BA瘙塁LAR M, 瘙塁ENGL M, et al. Effect of thermosonication on physicochemical, microbiological and sensorial characteristics of ayran during storage[J]. Ultrasonics Sonochemistry, 2015, 23: 406-412.
[36] CUEVA O A. Pulsed electric field influences on acid tolerance, bile tolerance, protease activity and growth characteristics of lactobacillus acidophilus LA-K[D]. Baton Rouge: Louisiana State University, 2009.
[37] DUNN J E, PEARLMAN J S. Methods and apparatus for extending the shelf life of fluid food products: US4695472[P]. 1987-09-22.
[38] CHOI H S, KOSIKOWSKI F V. Sweetened plain and flavored carbonated yogurt beverages[J]. Journal of Dairy Science, 1985, 68(3): 613-619.
[39] HAM J S, JEONG S G, LEE S G, et al. Quality of irradiated plain yogurt during storage at different temperatures[J]. Asian-Australasian Journal of Animal Sciences, 2009, 22(2): 289-295.
[40] 王蓉蓉, 孙传范, 王婷婷, 等. 超高压杀菌机制研究进展[J]. 高压物理学报, 2012, 26(6): 700-708. WANG R R, SUN C F, WANG T T, et al. Researchon mechanism of ultra-high presssure sterilization[J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 700-708.
[41] SERRA M, TRUJILLO A J, GUAMIS B, et al. Evaluation of physical properties during storage of set and stirred yogurts made from ultra-high pressure homogenization-treated milk[J]. Food Hydrocolloids, 2009, 23(1): 82-91.
[42] MACIULEVICIUS M, TAMOINAS M, JAKTYS B, et al. Investigation of microbubble cavitation-induced calcein release from cells in vitro[J]. Ultrasound in Medicine & Biology, 2016, 42(12): 2 990-3 000.
[43] EWE J, WAN ABDULLAH W, BHAT R, et al. Enhanced growth of lactobacilli and bioconversion of isoflavones in biotin-supplemented soymilk upon ultrasound-treatment[J]. Ultrasonics Sonochemistry, 2012, 19(1): 160-173.
[44] LENTACKER I, DE COCK I, DECKERS R, et al. Understanding ultrasound induced sonoporation: Definitions and underlying mechanisms[J]. Advanced Drug Delivery Reviews, 2014, 72: 49-64.
[45] PITT W G, ROSS S A. Ultrasound increases the rate of bacterial cell growth[J]. Biotechnology Progress, 2003, 19(3): 1 038-1 044.
[46] OJHA K S, MASON T J, O DONNELL C P, et al. Ultrasound technology for food fermentation applications[J]. Ultrasonics Sonochemistry, 2017, 34: 410-417.
[47] NGUYEN T M P, LEE Y K, ZHOU W. Stimulating fermentative activities of bifidobacteria in milk by highintensity ultrasound[J]. International Dairy Journal, 2009, 19(6/7): 410-416.
[48] NIELSEN H B, SONNE A, GRUNERT K G, et al. Consumer perception of the use of high-pressure processing and pulsed electric field technologies in food production[J]. Appetite, 2009, 52(1): 115-126.
[49] LOGHAVI L, SASTRY S K, YOUSEF A E. Effect of moderate electric field frequency and growth stage on the cell membrane permeability of Lactobacillus acidophilus[J]. Biotechnol Prog, 2009, 25(1): 85-94.
[50] CHANOS P, WARNCKE M C, EHRMANN M A, et al. Application of mild pulsed electric fields on starter culture accelerates yogurt fermentation[J]. European Food Research and Technology, 2020, 246(3): 621-630.
[51] TAMBURINI S, ANESI A, FERRENTINO G, et al. Supercritical CO2 induces marked changes in membrane phospholipids composition in Escherichia coli K12[J]. The Journal of Membrane Biology, 2014, 247(6): 96530.
[52] TAMBURINI S, BALLARINI A, FERRENTINO G, et al. Comparison of quantitative PCR and flow cytometry as cellular viability methods to study bacterial membrane permeabilization following supercritical CO2 treatment[J]. Microbiology (Reading, England), 2013, 159(6): 1 056-1 066.
[53] GARCIA-GONZALEZ L, GEERAERD A H, MAST J, et al. Membrane permeabilization and cellular death of Escherichia coli, Listeria monocytogenes and Saccharomyces cerevisiae as induced by high pressure carbon dioxide treatment[J]. Food Microbiology, 2009, 27(4): 541-549.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.