•  
  •  
 

Abstract

Based on Raman scattering phenomenon, surface-enhanced Raman spectroscopy (SERS) detection technology enhances "fingerprint" information of tested substance by adsorbing it on the surface of SERS substrate to achieve trace detection. With the advantages of simple pre-processing, high sensitivity, simple operation, real-time non-destructive detection on site and so on, SERS analysis technology has attracted much attention in food safety rapid detection. The characteristics and limitations of various types of SERS substrates were introduced. The recent research on SERS detection technology in food safety detection was summarized in detail. Finally, this paper discussed the challenges of its commercial application, and prospected the future development.

Publication Date

1-30-2024

First Page

212

Last Page

218

DOI

10.13652/j.spjx.1003.5788.2023.80499

References

[1] TAREKE E, RYDBERG P, KARLSSON P, et al. Analysis of acrylamide, a carcinogen formed in heated foodstuffs[J]. Journal of Agricultural and Food Chemistry, 2002, 50(17): 4 998-5 006.
[2] ANASTASSIADES M, LEHOTAY S J, STAJNBAHER D, et al. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce[J]. Journal of AOAC International, 2003, 86(2): 412-431.
[3] LAZCKA O, DEL CAMPO F J, MUNOZ F X. Pathogen detection: A perspective of traditional methods and biosensors[J]. Biosensors and Bioelectronics, 2007, 22(7): 1 205-1 217.
[4] LIU C, XU D, DONG X, et al. A review: Research progress of SERS-based sensors for agricultural applications[J]. Trends in Food Science and Technology, 2022, 128: 90-101.
[5] 马迪, 曹宁, 宋烨, 等. 表面增强拉曼光谱法在果蔬农药残留检测中的应用[J]. 食品安全质量检测学报, 2023, 14(3): 10-17. MA D, CAO N, SONG H, et al.Application of surface enhanced Raman spectroscopy in detection of pesticide residues in fruits and vegetables[J]. Journal of Food Safety and Quality, 2023, 14(3): 10-17.
[6] CHANG K, ZHAO Y, WANG M, et al. Advances in metal-organic framework-plasmonic metal composites based SERS platforms: Engineering strategies in chemical sensing practical applications and future perspectives in food safety[J]. Chemical Engineering Journal, 2023, 459: 141539.
[7] GE K, HU Y, LI G. Recent progress on solid substrates for surface-enhanced Raman spectroscopy analysis[J]. Biosensors, 2022, 12(11): 941.
[8] 邱琦珍, 潘兴鲁, 刘振江, 等. 表面增强拉曼光谱检测技术在农药残留检测中的应用[J]. 现代农药, 2022, 21(2): 22-25. QIU Q Z,PAN X L, LIU Z J, et al. Application of surface-enhanced Raman spectroscopy detection technologyin pesticide residue detection[J]. Modern Agrochemicals, 2022, 21(2): 22-25.
[9] 冯敬敬, 胡文彦, 蒋卉, 等. 表面增强拉曼光谱快速检测食品中双酚A的研究进展[J]. 中国食品卫生杂志, 2023, 35(1): 126-130. FENG J J, HU W Y, JIANG H, et al. Advances in surface enhanced Raman spectroscopy technology for rapid detection of bisphenol A in food[J]. Chinese Journal of Food Hygiene, 2023, 35(1): 126-130.
[10] 王哲, 陈芳, 董丽, 等. 表面增强拉曼光谱在食源性致病菌检测中的应用研究进展[J]. 食品研究与开发, 2022, 43(17): 184-193. WANG Z, CHEN F, DONG L, et al. Application of surface enhanced Raman spectroscopy in the detection of foodborne pathogens: A review[J]. Food Research and Development, 2022, 43(17): 184-193.
[11] 朱家骥, 荣雅文, 焦天慧, 等. 食品中常见真菌毒素的表面增强拉曼光谱检测研究进展[J]. 食品科学, 2023, 44(17): 235-247. ZHU J J, RONG Y W, JIAO T H, et al. Advance in the detection of common mycotoxins in foods by surface-enhanced Raman spectroscopy[J]. Food Science, 2023, 44(17): 235-247.
[12] LI Y Z, LU C, ZHOU S S, et al. Sensitive and simultaneous detection of different pathogens by surface-enhanced Raman scattering based on aptamer and Raman reporter co-mediated gold tags[J]. Sensors and Actuators B-Chemical, 2020, 317: 128182.
[13] ZHENG F J, KE W, SHI L X, et al. Plasmonic Au-Ag Janus nanoparticle engineered ratiometric surface-enhanced Raman scattering aptasensor for Ochratoxin A detection[J]. Analytical Chemistry, 2019, 91(18): 11 812-11 820.
[14] BHAMIDIPATI M, CHO H Y, LEE K B, et al. SERS-based quantification of biomarker expression at the single cell level enabled by gold nanostars and truncated aptamers[J]. Bioconjugate Chemistry, 2018, 29(9): 2 970-2 981.
[15] LIN M H, SUN L, KONG F B, et al. Rapid detection of paraquat residues in green tea using surface-enhanced Raman spectroscopy (SERS) coupled with gold nanostars[J]. Food Control, 2021, 130: 108280.
[16] WU Y, JIANG T T, WU Z Y, et al. Internal standard-based SERS aptasensor for ultrasensitive quantitative detection of Ag+ ion[J]. Talanta, 2018, 185: 30-36.
[17] SHAO B, MA X, ZHAO S, et al. Nanogapped Au (core) @ Au-Ag (shell) structures coupled with Fe3O4 magnetic nanoparticles for the detection of Ochratoxin A[J]. Analytica Chimica Acta, 2018, 1 033: 165-172.
[18] CHEN Z Y, SUN Y, SHI J Y, et al. Facile synthesis of Au@Ag core-shell nanorod with bimetallic synergistic effect for SERS detection of thiabendazole in fruit juice[J]. Food Chemistry, 2022, 370: 131276.
[19] MUHAMMAD M, YAN B, YAO G H, et al. surface-enhanced Raman spectroscopy for trace detection of tetracycline and dicyandiamide in milk using transparent substrate of Ag nanoparticle arrays[J]. ACS Applied Nano Materials, 2020, 3(7): 7 066-7 075.
[20] LUO X J, ZHAO X J, WALLACE G Q, et al. Multiplexed SERS detection of microcystins with aptamer-driven core-satellite assemblies[J]. Acs Applied Materials and Interfaces, 2021, 13(5): 6 545-6 556.
[21] GONG X Y, TANG M, GONG Z J, et al. Screening pesticide residues on fruit peels using portable Raman spectrometer combined with adhesive tape sampling[J]. Food Chemistry, 2019, 295: 254-268.
[22] WANG C, WONG K W, WANG Q, et al. Silver-nanoparticles-loaded chitosan foam as a flexible SERS substrate for active collecting analytes from both solid surface and solution[J]. Talanta, 2019, 191: 241-247.
[23] ZHANG C M, YOU T T, YANG N, et al. Hydrophobic paper-based SERS platform for direct-droplet quantitative determination of melamine[J]. Food Chemistry, 2019, 287: 363-368.
[24] WANG J F, WU X Z, WANG C W, et al. Magnetically assisted surface-enhanced Raman spectroscopy for the detection of staphylococcus aureus based on aptamer recognition[J]. Acs Applied Materials and Interfaces, 2015, 7(37): 20 919-20 929.
[25] BENESOVA M, BERNATOVA S, MIKA F, et al. SERS-tags: Selective immobilization and detection of bacteria by strain-specific antibodies and surface-enhanced Raman scattering[J]. Biosensors (Basel), 2023, 13(2): 182.
[26] WANG H, LIU M, ZHAO H, et al. Rapid detection and identification of fungi in grain crops using colloidal Au nanoparticles based on surface-enhanced Raman scattering and multivariate statistical analysis[J]. World Journal of Microbiology Biotechnology, 2022, 39(1): 26.
[27] LI Y, GAO Y, LING N, et al. Rapid and simple quantitative identification of Listeria monocytogenes in cheese by isothermal sequence exchange amplification based on surface-enhanced Raman spectroscopy[J]. Journal of Dairy Science, 2022, 105(12): 9 450-9 462.
[28] DAYALAN S, GEDDA G, LI R N, et al. Vancomycin functionalization of gold nanostars for sensitive detection of foodborne pathogens through surface-enhanced Raman scattering[J]. Journal of the Chinese Chemical Society, 2022, 69(12): 2 049-2 060.
[29] ZHAO W, YANG S, ZHANG D, et al. Ultrasensitive dual-enhanced sandwich strategy for simultaneous detection of Escherichia coli and Staphylococcus aureus based on optimized aptamers-functionalized magnetic capture probes and graphene oxide-Au nanostars SERS tags[J]. Journal of Colloid and Interface Science, 2023, 634: 651-663.
[30] CHEN R, WANG H, SUN C, et al. Au@SiO2 SERS nanotags based lateral flow immunoassay for simultaneous detection of aflatoxin B1 and ochratoxin A[J]. Talanta, 2023, 258: 124401.
[31] GUO Z, GAO L, YIN L, et al. Novel mesoporous silica surface loaded gold nanocomposites SERS aptasensor for sensitive detection of zearalenone[J]. Food Chemistry, 2023, 403: 134384.
[32] JUNEJA S, ZHANG B, NUJHAT N, et al. Quantitative sensing of domoic acid from shellfish using biological photonic crystal enhanced SERS substrates[J]. Molecules, 2022, 27(23): 8 364.
[33] XU Y, JIN Z, ZHAO Y. Tunable preparation of SERS-active Au-Ag Janus@Au NPs for label-free Staphylococcal Enterotoxin C detection[J]. Journal of Agricultureand Food Chemistry, 2023, 71(2): 1 224-1 233.
[34] 覃重阳, 张媛媛, 邓薪睿, 等. 表面增强拉曼光谱法快速检测茶叶中百草枯与敌百虫农药残留[J]. 食品安全质量检测学报, 2022, 13(14): 4 439-4 446. QIN C Y, ZHANG Y Y, DENG X R, et al. Rapid detection of paraquat and trichlorfon pesticide residues in tea by surface-enhanced Raman spectroscopy[J]. Journal of Food Safety and Quality, 2022, 13(14): 4 439-4 446.
[35] BAI F, DONG J, WANG T, et al. Controllable assembly of high sticky and flexibility surface-enhanced Raman scattering substrate for on-site target pesticide residues detection[J]. Food Chemistry, 2023, 405: 134794.
[36] 周玮, 夏婧竹, 吴蓉, 等. 基于拉曼光谱技术快速检测叶菜类蔬菜中噻虫嗪残留的方法[J]. 中国食品卫生杂志, 2023, 35(1): 27-31. ZHOU W, XIA J Z, WU R, et al. Rapid determination of thiamethoxam residues in leafy vegetables based on Raman spectroscopy[J]. Chinese Journal of Food Hygiene, 2023, 35(1): 27-31.
[37] XU S, LI M, LI X, et al. Engineering an Ag/Au bimetallic nanoparticle-based acetylcholinesterase SERS biosensor for in situ sensitive detection of organophosphorus pesticide residues in food[J]. Analytiacal and Bioanalytical Chemistry, 2023, 415(1): 203-210.
[38] ZHANG S, XU J, HUANG Y, et al. Monodisperse Ag nanoparticle-decorated bacterial nanocellulose as flexible surface-enhanced Raman scattering sensors for trace detection of toxic thiram[J]. ACS Applied Nano Materials, 2022, 5(12): 18 519-18 530.
[39] ZHAI W, CAO M, XIAO Z, et al. Rapid detection of malathion, phoxim and thiram on orange surfaces using Ag nanoparticle modified PDMS as surface-enhanced Raman spectroscopy substrate[J]. Foods, 2022, 11(22): 3 597.
[40] ZHAO Y, XU Y, JING X, et al. SERS-active plasmonic metal NP-CsPbX(3) films for multiple veterinary drug residues detection[J]. Food Chemistry, 2023, 412: 135420.
[41] LI X, ZHOU H, WANG L, et al. SERS paper sensor based on three-dimensional ZnO@Ag nanoflowers assembling on polyester fiber membrane for rapid detection of florfenicol residues in chicken[J]. Journal of Food Composition and Analysis, 2023, 115: 104911.
[42] 班晶晶, 刘贵珊, 何建国, 等. 基于表面增强拉曼光谱与二维相关光谱法检测鸡肉中恩诺沙星残留[J]. 食品与机械, 2020, 36(7): 55-58. BAN J J, LIU G S, HE J G, et al. Detection of enrofloxacin residues in chicken based on surface enhanced Raman spectroscopy and two-dimensional correlation spectroscopy[J]. Food & Machinery, 2020, 36(7): 55-58.
[43] 徐婧, 郑红, 卢江龙, 等. 基于表面增强拉曼光谱技术的饮用水中痕量恩诺沙星和环丙沙星快速检测[J]. 环境科学, 2022, 43(11): 4 982-4 991. XU J, ZHENG H, LU J L, et al. Rapid detection of trace enrofloxacin and ciprofloxacin in drinking water by SERS[J]. Environmental Science, 2022, 43(11): 4 982-4 991.
[44] YANG Z, MA C, GU J, et al. Detection of melamine by using carboxyl-functionalized Ag-COF as a novel SERS substrate[J]. Food Chemistry, 2023, 401: 134078.
[45] 董祥辉, 杨方威, 于航, 等. 表面增强拉曼法快速检测猪肉中齐帕特罗残留[J]. 光谱学与光谱分析, 2022, 42(9): 2 843-2 847. DONG X H, YANGF W, YU H, et al. Papid detection of zilpaterol residues in pork by surface-enhanced Raman spectroscopy[J]. Spectroscopy and Spectral Analysis, 2022, 42(9): 2 843-2 847.
[46] 胡家勇, 周陶鸿, 姚晓帆, 等. 表面增强拉曼光谱法筛查保健酒中那非类药物[J]. 食品与机械, 2022, 38(9): 64-71. HU J Y, ZHOU T H, YAO X F, et al. Screening of PDE-5 inhubitors in health wine by surface-enhanced Raman spectroscopy[J]. Food & Machinery, 2022, 38(9): 64-71.
[47] XU S, CHEN P, LIN X, et al. Controllable synthesis of flower-like AuNFs@ZIF-67 core-shell nanocomposites for ultrasensitive SERS detection of histamine in fish[J]. Analytica Chimica Acta, 2023, 1 240: 340776.
[48] WANG H, WANG C, HUANG J, et al. Preparation of SERS substrate with 2D silver plate and nano silver sol for plasticizer detection in edible oil[J]. Food Chemistry, 2023, 409: 135363.
[49] ZHANG Q, LIU Z, DUAN L, et al. Ultrasensitive determination of lipid soluble antioxidants in food products using silver nano-tripod SERS substrates[J]. Applied Surface Science, 2023, 611: 155577.
[50] YE Z H, CHEN X T, ZHU H Y, et al. Aggregating-agent-assisted surface-enhanced Raman spectroscopy-based detection of acrylamide in fried foods: A case study with potato chips[J]. Food Chemistry, 2023, 403: 134377.
[51] LI J, XU J, PAN Y, et al. Au@Ag-labeled SERS lateral flow assay for highly sensitive detection of allergens in milk[J]. Food Science and Human Wellness, 2023, 12(3): 912-919.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.