•  
  •  
 

Corresponding Author(s)

张文刚(1993—),男,青海大学助理研究员,硕士。E-mail: 20179900978@qhu.edu.cn

Abstract

[Objective] This study aimed to improve the organic selenium content of quinoa seeds and develop high-quality Se-rich quinoa food raw materials. [Methods] Using Qingbaili No. 1 quinoa as raw material and sodium selenite as a selenium source, the selenium-enriched germination process conditions of quinoa were optimized through one-way experiments combined with orthogonal experiments. The soluble protein, polyphenol content, and antioxidant capacity of selenium-enriched quinoa were further analyzed. [Results] The optimal process conditions for selenium-enriched germination of quinoa were sodium selenite solution concentration of 20 mg/L, soaking temperature of 25 ℃, soaking time of 6 h, soaking solution pH of 7.0, germination time of 48 h, and germination temperature of 20 ℃. Under these conditions, the organic selenium content of selenium-enriched germinated quinoa was 349.52 μg/kg. Selenium-enriched sprouted quinoa had the highest content of free phenols (236.35 mg/100 g) and bound phenols (198.31 mg/100 g), and control deionized water germinated quinoa had the highest content of soluble protein (22.18%). Notably, the antioxidant activities of soluble protein, free phenols, and bound phenols in selenium-rich germinated quinoa were the strongest, followed by those in control deionized water germinated quinoa, and untreated quinoa was relatively the lowest. [Conclusion] Se-enriched germination can significantly increase the contents of organic selenium, soluble protein and polyphenols, and enhance the antioxidant capacity of Quinoa.

Publication Date

9-11-2024

First Page

175

Last Page

182

DOI

10.13652/j.spjx.1003.5788.2023.81121

References

[1] 陈淑芳, 苏晓丹, 李瑞, 等. 荞麦富硒萌发过程中生理变化比较研究[J]. 食品工业, 2019, 40(1): 47-51. CHEN S F, SU X D, LI R, et al. Comparative study of the physiological changes of buckwheat during the selenium-enriched and germination process[J]. The Food Industry, 2019, 40(1): 47-51.
[2] HAN M Q, LIU K L. Selenium andselenoproteins: their function and development of selenium-rich foods[J]. International Journal of Food Science & Technology, 2022, 57(11): 7 026-7 037.
[3] ZHANG L Q, GUO Y B, LIANG K H, et al. Determination of selenium in common and selenium-rich rice from different areas in china and assessment of their dietary intake[J]. International Journal of Environmental Research and Public Health, 2020, 17(12): 4 596.
[4] 李婷婷, 段耿婷, 张澜, 等. 不同亚硒酸钠浓度对党参生长、生理特性和品质的影响[J]. 广西植物, 2023, 43(4): 755-764. LI T T, DUAN G T, ZHANG L, et al. Effect of different selenium concentrations on growth, physiological characteristics and quality of codonopsis pilosula[J]. Guihaia, 2023, 43(4): 755-764.
[5] CAO Y A, ZOU L, LI W, et al. Dietary quinoa (Chenopodium quinoa willd.) polysaccharides ameliorate high-fat diet-induced hyperlipidemia and modulate gut microbiota[J]. International Journal of Biological Macromolecules, 2020, 163: 55-65.
[6] NG C Y, WANG M F. The functional ingredients of quinoa (Chenopodium quinoa) and physiological effects of consuming quinoa: a review[J]. Food Frontiers, 2021, 2(3): 329-356.
[7] REN G X, TENG C, FAN X, et al. Nutrient composition, functional activity and industrial applications of quinoa (Chenopodium quinoa willd.) [J]. Food Chemistry, 2023, 410: 135290.
[8] HERNANDEZ-LEDESMA B. Quinoa (Chenopodium quinoa willd.) as source of bioactive compounds: a review[J]. Bioactive Compounds in Health and Disease, 2019, 2(3): 27-47.
[9] KITAGUCHI T, OGRA Y, IWASHITA Y, et al. Speciation of selenium in selenium-enriched seeds, buckwheat (Fagopyrum esculentum moench) and quinoa (Chenopodium quinoa willdenow) [J]. European Food Research and Technology, 2008, 227: 1 455-1 460.
[10] 崔建荣, 李成虎, 尹学红. 硒肥对藜麦生长发育及产量的影响研究: 基于海原县段塬村藜麦纳米硒肥试验分析[J]. 农业开发与装备, 2022(12): 175-177. CUI J R, LI C H, YIN X H, et al. Research on the effect of selenium fertilizer on the growth, development and yield of quinoa-based on the experimental analysis of quinoa nano-selenium fertilizer in duan plateau village, haiyuan county[J]. Agricultural Development & Equipments, 2022(12): 175-177.
[11] AMERIAN M, KHORAMIVAFA M, RABANI B A. Effect of selenium andhumic acid on germination and some morphological characteristics of quinoa under drought and salinity stress[J]. Journal of Vegetables Sciences, 2023, 6(2): 1-16.
[12] LAN Y L, ZHANG W G, LIU F G, et al. Recent advances in physiochemical changes, nutritional value, bioactivities, and food applications of germinated quinoa: a comprehensive review[J]. Food Chemistry, 2023, 426: 136390.
[13] IKRAM A, SAEED F, AFZAAL M, et al. Nutritional and end-use perspectives of sprouted grains: a comprehensive review[J]. Food Science & Nutrition, 2021, 9(8): 4 617-4 628.
[14] LIU S Y, WANG W, LU H Y, et al. New perspectives on physiological, biochemical and bioactive components during germination of edible seeds: a review[J]. Trends in Food Science & Technology, 2022, 123: 187-197.
[15] 张文刚, 杜春婷, 杨希娟, 等. 不同加工方式对藜麦蛋白质结构与功能特性的影响[J]. 食品科学, 2022, 43(7): 88-95. ZHANG W G, DU C T, YANG X J, et al. Effects of different processing methods on the structural and functional properties of quinoa proteins[J]. Food Science, 2022, 43(7): 88-95.
[16] 聂昌宏, 郑欣, 阿依居来克·卡得尔, 等. 考马斯亮蓝法检测不同乳中乳清蛋白含量[J]. 食品安全质量检测学报, 2019, 10(5): 1 138-1 142. NIE C G, ZHEN X, AYIJULAIKE D, et al. Determination of whey protein content in different kinds of of milk by coomassie brilliant blue method[J]. Journal of Food Safety & Quality, 2019, 10(5): 1 138-1 142.
[17] 郭俊玲, 张杰, 张文刚, 等. 超声波协同萌发处理富集黑青稞多酚的工艺优化及其酚酸组成分析[J]. 食品工业科技, 2023, 44(12): 207-215. GUO J L, ZHANG J, ZHANG W G, et al. Process optimization of ultrasonic co-germination for enriching black highland barley polyphenols and analysis of phenolic acid composition[J]. Science and Technology of Food Industry, 2023, 44(12): 207-215.
[18] 杨希娟, 党斌, 樊明涛. 溶剂提取对青稞中不同形态多酚组成及抗氧化活性的影响[J]. 食品科学, 2018, 39(24): 239-248. YANG X J, DANG B, FAN M T. Effect of different extraction solvents on phenolic profiles and antioxidant activities ofhulless barley[J]. Food Science, 2018, 39(24): 239-248.
[19] BAKAR M F A, MOHAMED M, RAHMAT A, et al. Phytochemicals and antioxidant activity of different parts of bambangan (Mangifera pajang) and tarap (Artocarpus odoratissimus) [J]. Food Chemistry, 2009, 113(2): 479-483.
[20] GUO X D, MA Y J, PARRY J, et al. Phenolics content and antioxidant activity of tartary buckwheat from different locations[J]. Molecules, 2011, 16(12): 9 850-9 867.
[21] 杨瑞, 党斌, 张杰, 等. 青海青稞、燕麦、藜麦营养品质及抗氧化活性比较研究[J]. 中国粮油学报, 2022, 37(5): 63-69. YANG R, DANG B, ZAHNG J, et al. A comparative study on nutritional quality and antioxidant activity of barley, oats, and quinoa in Qinghai[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(5): 63-69.
[22] 孙美侠, 严宏康, 程超, 等. 富硒麦芽的制备工艺优化[J]. 现代食品科技, 2023, 39(6): 221-229. SUN M X, YAN H K, CHENG C, et al. Optimization of preparation processes for selenium-rich malt[J].Modern Food Science and Technology, 2023, 39(6): 221-229.
[23] 董状, 吕庆云, 沈汪洋, 等. 富硒发芽糙米及其挤压米制作工艺优化[J]. 食品科技, 2021, 46(6): 174-180. DONG Z, LYU Q Y, SHEN W Y, et al. Optimization of processing technology of selenium enriched germinated brown rice and extruded rice[J]. Food Science and Technology, 2021, 46(6): 174-180.
[24] 吴玉娟, 陈壹刘, 张靖松, 等. 超高压辅助酶解豌豆蛋白工艺优化研究[J]. 粮食与油脂, 2023, 36(11): 90-94. WU Y J, CHEN Y L, ZAHNG J S, et al. Optimization of enzymatic hydrolysis of pea protein assisted by ultra-high pressure[J]. Cereals & Oils, 2023, 36(11): 90-94.
[25] 魏龙, 郭楠楠, 段秋虹. 大豆发芽富硒工艺条件研究[J]. 粮食与油脂, 2018, 31(10): 21-23. WEI L, GUO N N, DAUN Q H. Study on the technological conditions of soybean germination and selenium enrichment[J]. Cereals & Oils, 2018, 31(10): 21-23.
[26] 王红, 叶英, 韦唯, 等. 不同萌发条件及加工方法对藜麦品质的影响[J]. 中国粮油学报, 2023, 38(9): 72-79. WANG H, YE Y, WEI W, et al. Effects of different germination conditions and processing methods on the quality of quinoa[J]. Journal of the Chinese Cereals and Oils Association, 2023, 38(9): 72-79.
[27] 宋妍, 李粟晋, 陶阳, 等. 青稞籽粒富硒发芽条件优化及其抗氧化能力分析[J]. 食品工业科技, 2019, 40(14): 188-195, 202. SONG Y, LI S J, TAO Y, et al. Optimization of selenium enriched germination conditions and its antioxidant abilities in highland barley seeds[J]. Science and Technology of Food Industry, 2019, 40(14): 188-195, 202.
[28] 韩雅盟, 池建伟, 马永轩, 等. 藜麦发芽过程中蛋白质与皂苷及淀粉消化特性的变化规律[J]. 现代食品科技, 2019, 35(6): 17-23. HAN Y M, CHI J W, MA Y X, et al. Changes in protein, saponin content and starch profiles of quinoa (Chenopodium quinoa willd.) seeds during germination[J]. Modern Food Science and Technology, 2019, 35(6): 17-23.
[29] 郭思倩, 杨肇兴, 姚洋, 等. 萌发对藜麦蛋白质结构与功能特性的影响[J]. 中国粮油学报, 2023, 38(8): 156-162. GUO S Q, YANG Z X, YAO Y, et al. Influence of germination on qualitative properties of quinoa (Chenopodium quinoa willd.) protein[J]. Journal of the Chinese Cereals and Oils Association, 2023, 38(8): 156-162.
[30] 李楠, 孟航婷, 孙元琳, 等. 黑豆不同发芽期多酚、黄酮及抗氧化活性分析[J]. 食品工业, 2023, 44(8): 139-143. LI N, MENG H T, SUN Y L, et al. Analysis of polyphenols, flavonoids and antioxidant activity of black bean at different germination stages[J]. The Food Industry, 2023, 44(8): 139-143.
[31] 华正莹. 发芽富硒糙小米抗氧化活性研究及其速食粉的研制[D]. 锦州: 渤海大学, 2021: 10. HUA Z Y. Study on antioxidant and instant powder development of germinated selenium-enriched rough millet[D]. Jinzhou: Bohai University, 2021: 10.
[32] SANTESMASSES D, GLADYSHEV V N. Pathogenic variants in selenoproteins and selenocysteine biosynthesis machinery[J]. International Journal of Molecular Sciences, 2021, 22(21): 11593.
[33] GUARDADO-FLIX D, SERNA-SALDIVAR S O, GUTIRREZ-URIBE J A, et al. Selenium in germinated chickpea (Cicer arietinum L.) increases the stability of its oil fraction[J]. Plants, 2019, 8(5): 113.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.