Abstract
[Objective] This paper aims to achieve automatic identification and classification of Chinese spirits,solve the production fluctuation of traditional "alcoholic strength determination based on foam watching" for Chinese spirits,and balance the accuracy,real -time performance,and universality of existing deep learning -based methods for foam classification of Chinese spirits.[Methods] An automatic foam classification method of Chinese spirit based on image acquisition optimization recognition was proposed.The foam images were collected through a self -built platform,and the data quality was improved by preprocessing via ENet.The foam images were classified by using the Vision Transformer (ViT) and ConvNeXt models.[Results] This method improved the automation level and accuracy of alcoholic strength determination for Chinese spirits and achieved a classification accuracy of 99.4% while ensuring real -time performance.[Conclusion] This method effectively optimizes the traditional alcoholic strength determination technology for Chinese spirits,enabling rapid and accurate real -time detection and classification of foams.
Publication Date
4-3-2025
First Page
9
Last Page
17
DOI
10.13652/j.spjx.1003.5788.2024.80643
Recommended Citation
Qian, ZHAO and Yan, SUN
(2025)
"Foam classification method of Chinese spirits based on image acquisition optimization recognition,"
Food and Machinery: Vol. 41:
Iss.
1, Article 2.
DOI: 10.13652/j.spjx.1003.5788.2024.80643
Available at:
https://www.ifoodmm.cn/journal/vol41/iss1/2
References
[1] 毛 洪 川.整 粒 高 粱 酿 造 浓 香 型 白 酒 的 工 艺 开 发 及 应 用 研 究[D].绵阳:西南科技大学,2017:117-122.MAO H C.Development and application of a new technology of Luzhou flavour Liquor using intact sorghum as raw material[D].Mianyang:Southwest University of Science and Technology,2017:117-122.
[2] 马娜.荧光阵列传感器的构建及在白酒风味物质检测中的应用研究 [D].重庆:重庆大学,2018:16-21.MA N.Fabrication of fluorescent system and its application in the detection of liquor flavoring substances [D].Chongqing:Chongqing University,2018:16-21.
[3] 刘智萍,崔克彬.基于深度学习的白酒酒花实时分类方法 [J].食品与机械, 2022,38(11):111-116.LIU Z P,CUI K B.Real-time classification method for liquor hops based on deep learning [J].Food & Machinery,2022,38(11):111-116.
[4] 泸州老窖集团有限责任公司.泸型酒技艺大全 [M].北京:中国轻工业出版社,2011:105-106.Luzhou Laojiao Group Co Ltd.Complete collection of Luzhou type liquor techniques [M].Beijing:China Light Industry Press,2011:105-106.
[5] 何超,余东,李战国,等.近红外光谱技术在量质摘酒中的应用探索 [J].酿酒,2019,46(4):58-60.HE C,YU D,LI Z G,et al.Application of near infrared spectroscopyto gathering distillate according to the quality [J].Liquor Making,2019,46(4):58-60.
[6] WU Z Z,XU E B,LONG J,et al.Measurement of fermentation parameters of Chinese rice wine using Raman spectroscopy combined with linear and non-linear regression methods [J].Food Control,2015,56:95-102.
[7] 杨静娴,任小洪.基于多纹理特征的白酒摘酒酒花图像分类|识别 [J].包装与食品机械,2021,39(4):38-45.YANG J X,REN X H.Classification and recognition of liquor receiving hops images based on multiple texture feature extraction [J].Packaging and Food Machinery,2021,39(4):38-45.
[8] 潘斌,韩强,姚娅川.基于卷积神经网络的白酒酒花分类研究[J].食品与机械,2021,37(10):30-37,88.PAN B,HAN Q,YAO Y C.Research on Classification of liquor hops based on convolution neural network [J].Food & Machinery,2021,37(10):30-37,88.
[9] 余锴鑫.基于图像分类算法的自动化摘酒方法研究 [D].杭州:浙江大学,2019:10-12.YU K X.Research on automatic wine picking method based on image classification algorithm [D].Hangzhou:Zhejiang University,2019:10-12.
[10] 田子宸.基于计算机视觉的智能摘酒方法研究 [D].杭州:浙江大学,2020:60-67.TIAN Z C.Research on intelligent liquor selection method based on computer vision [D].Hangzhou:Zhejiang University,2020:60-67.
[11] 王继华,李兆飞,杨壮,等.面向不平衡数据集的浓香型白酒基酒等级分类研究 [J].中国酿造,2024,43(1):184-189.WANG J H,LI Z F,YANG Z,et al.Research on grade classification of strong-flavor Baijiu base liquor based on unbalanced data sets [J].China Brewing,2024,43(1):184-189.
[12] 朱 琳,刘 恩,蒋 文,等.乙 醇 水 溶 液 表 面 张 力 的 模 型 拟 合 [J].数理医药学杂志,2008,21(6):647-649.ZHU L,LIU E,JIANG W,et al.Model fitting of surface tension of ethanol aqueous solution [J].Journal of Mathematical Medicine,2008,21(6):647-649.
[13] 刘 江 生,贾 怡 娴,韩 青 梅,等.酒 花 与 酒 的 探 讨 [J].酿 酒,2014,41(3):36-41.LIU J S,JIA Y X,HAN Q M,et al.Discussion on the relationship between liquor whirlpool and liquor [J].Liquor Making,2014,41(3):36-41.
[14] 张琴,银莹,杨宛宜,等.清香型白酒中甲醇、乙酸乙酯和乳酸乙酯的检测 [J].中国酿造,2023,42(11):262-266.ZHANG Q,YIN Y,YANG W Y,et al.Detection of methanol,ethyl acetate and ethyl lactate in light-flavor Baijiu [J].China Brewing,2023,42(11):262-266.
[15] 方昕.聚乳酸的乳酸乙酯分散液制备及其在纺织上的应用[D].上海:东华大学,2014:25-33.FANG X.Preparation of polylactic acid dispersion with ethyl lactate and its application in textiles [D].Shanghai:Donghua University,2014:25-33.
[16] 康乐,冯殿义,胡瑢华.液体泡沫中单气泡的图像识别算法[J].渤海大学学报 (自然科学版 ),2017,38(2):167-172.KANG L,FENG D Y,HU R H.Single bubbles recognition algorithm in liquid foam image [J].Journal of Bohai University (Natural Science Edition ),2017,38(2):167-172.
[17] 张琦,沈才洪,孙啸涛,等.浓香型白酒蒸馏过程中挥发性风味物质的变化规律 [J].现代食品科技,2018,34(6):244-254.ZHANG Q,SHEN C H,SUN X T,et al.Variation regularity of volatile substances in Luzhou flavor liquor during distillation process [J].Modern Food Science and Technology,2018,34(6):244-254.
[18] 熊 子 书.试 论 白 酒 香 味 成 分 与 风 味 的 关 系 [J].黑 龙 江 发 酵,1980 (3):10-13.XIONG Z S.On the relationship between flavor components and flavor of Baijiu [J].Heilongjiang Fermentation,1980 (3):10-13.
[19] HOLLOWAY D C,JPHNSON R H.Advancements in holographic photoelasticity [J].Experimental Mechanics,1971,11(2):57-63.
[20] PASZKE A,CHAURASIA A,KIM S,et al.ENet:a deep neural network architecture for real-time semantic segmentation [J].Computer Science,2016,14(12):77-79.
[21] 崔涛.浅谈白酒中的高级醇 [J].酿酒科技,1994 (6):28-29.CUI T.Elementary introduction to higher alcohols in Baijiu [J].Liquor-Making scrence & Technology,1994 (6):28-29.
[22] LIU Z,MAO H,WU C Y,et al.A ConvNet for the 2020 s[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR ).New Orleans,LA USA.IEEE,2022:77-82.
[23] MA N,ZHANG X,ZHENG H T,et al.ShuffleNet V 2:practical guidelines for efficient CNN architecture design [C]// Computer Vision-ECCV 2018.[S.l.]:Springer International Publishing,2018:122-138.