•  
  •  
 

Corresponding Author(s)

刘军(1985—),男,重庆科创职业学院副教授。E-mail:bfsfgha@126.com

Abstract

[Objective] To improve the accuracy and efficiency of tomato quality inspection in automated production lines, and solve the problems of traditional inspection, such as reliance on manual labor, low precision, and poor efficiency. [Methods] Based on the quality inspection system of the tomato automated production line, an integrated internal and external quality inspection system is developed by combining hyperspectral imaging and machine vision technologies. After preprocessing the hyperspectral detection data, an improved least squares support vector machine (LSSVM) model is employed to detect the soluble solids content and hardness of tomatoes, thereby completing internal quality inspection. For external quality inspection, the collected machine vision data are preprocessed, and an improved YOLOv 12 model is utilized to detect external defects. Additionally, the size and fruit shape index of tomatoes are calculated. The superiority of the method is validated through experimental testing. [Results] The internal quality inspection method demonstrates high predictive accuracy, with determination coefficients (R2) of 0.965 for total soluble solids and 0.975 for hardness, and root mean square errors (RMSE) of 0.082 ° Bx and 0.061 N, respectively. The improved YOLOv 12 model achieves an average defect detection accuracy of 99.20% and a detection speed exceeding 100 frames/s. The overall performance of this integrated system is superior to that of single-detection approaches and existing methods. [Conclusion] This integrated detection system enables synchronous, non-destructive, and efficient detection of both internal and external quality of tomatoes, effectively meeting the requirements of automated production lines.

Publication Date

1-13-2026

First Page

91

Last Page

98

DOI

10.13652/j.spjx.1003.5788.2025.60097

References

[1] 张雨,饶元,陈文骏,等.不同成熟度番茄果实多模态图像数据集 [J].中国科学数据,2025,10(1):73-88.ZHANG Y,RAO Y,CHEN W J,et al.A dataset of multimodal images of tomato fruits at different stages of maturity [J].China Scientific Data,2025,10(1):73-88.
[2] 丛军,李星.基于电子鼻、电子舌技术的荣昌猪肉及其制品贮藏过程新鲜度检测研究 [J].食品安全质量检测学报,2024,15(7):192-201.CONG J,LI X.Detection of freshness of Rongchang pork and its products during storage based on electronic nose and electronic tongue technology [J].Journal of Food Safety & Quality,2024,15(7):192-201.
[3] 孙 俊 洋,符 运 来,吕 晶,等.基 于 改 进 YOLOv 7模 型 的 海 参 苗计数方法研究 [J].计算机技术与发展,2024,34(11):166-171.SUN J Y,FU Y L,LY J,et al.Study on counting method of sea cucumber seedlings based on improved YOLOv 7 model [J].Computer Technology and Development,2024,34(11):166-171.
[4] ERNA K H,ROVINA K,MANTIHAL S.Current detection techniques for monitoring the freshness of meat-based products:a review [J].Journal of Packaging Technology and Research,2021,5(3):127-141.
[5] 沈海军,张汤磊,许振兴,等.基于 Fisher 判别分析对苹果新鲜度的识别研究 [J].食品工业科技,2023,44(4):361-368.SHEN H J,ZHANG T L,XU Z X,et al.Recognition of apple freshness based on fisher discriminant analysis [J].Science and Technology of Food Industry,2023,44(4):361-368.
[6] 孙宇朝,李守豪,夏秀波,等.利用改进 YOLOv 5s模型检测番茄果实成熟度及外观品质 [J].园艺学报,2024,51(2):396-410.SUN Y C,LI S H,XIA X B,et al.Detecting tomato fruit ripeness and appearance quality based on improved YOLOv 5s[J].Acta Horticulturae Sinica,2024,51(2):396-410.
[7] HUANG J,REN L F,ZHOU X K,et al.An improved neural network based on SENet for sleep stage classification [J].IEEE Journal of Biomedical and Health Informatics,2022,26(10):4 948-4 956.
[8] 顾文娟,魏金,阴艳超,等.基于改进 DeepLabv 3+的番茄图像多类别分割方法 [J].农业机械学报,2023,54(12):261-271.GU W J,WEI J,YIN Y C,et al.Multi-category segmentation method of tomato image based on improved DeepLabv 3+[J].Transactions of the Chinese Society for Agricultural Machinery,2023,54(12):261-271.
[9] 康明月,王成,孙鸿雁,等.基于改进的 WOA-LSSVM 樱桃番茄 内 部 品 质 检 测 方 法 研 究 [J].光 谱 学 与 光 谱 分 析,2023,43(11):3 541-3 550.KANG M Y,WANG C,SUN H Y,et al.Research on internal quality detection method of cherry tomatoes based on improved WOA-LSSVM [J].Spectroscopy and Spectral Analysis,2023,43(11):3 541-3 550.
[10] 朱婷婷,滕广,张亚军,等.基于改进 YOLO v 11的番茄表面缺陷检测方法 [J].农业机械学报,2025,56(6):546-553.ZHU T T,TENG G,ZHANG Y J,et al.Improved YOLO v 11 method for surface defect detection of tomato [J].Transactions of the Chinese Society for Agricultural Machinery,2025,56(6):546-553.
[11] 施 利 春,边 可 可,王 松 伟,等.基 于 改 进 U-Net 和IWOA-LSSVM 的 番 茄 综 合 品 质 检 测 方 法 研 究 [J].食 品 与 机 械,2025,41(8):109-117.SHI L C,BIAN K K,WANG W S,et al.Research on tomato comprehensive quality detection method based on improved U-Net and IWOA-LSSVM [J].Food & Machinery,2025,41(8):109-117.
[12] 郭德超,饶远立,张豪,等.结合机器视觉和光谱技术的番茄综合品质检测方法 [J].食品与机械,2024,40(9):123-130.GUO D C,RAO Y L,ZHANG H,et al.Comprehensive quality detection method for tomatoes combining machine vision and spectral techniques [J].Food & Machinery,2024,40(9):123-130.
[13] 文韬,代兴勇,李浪,等.基于机器视觉与光谱融合的柑橘品质无损检测分级系统设计与试验 [J].江苏大学学报 (自然科学版 ),2024,45(1):38-45.WEN T,DAI X Y,LI L,et al.Design and experiment of non-destructive testing and grading system for citrus quality based on machine vision and spectral fusion [J].Journal of Jiangsu University (Natural Science Edition ),2024,45(1):38-45.
[14] 吕金锐,付燕,倪美玉,等.基于改进 YOLOv 4模型的番茄成熟度检测方法 [J].食品与机械,2023,39(9):134-139.LU J R,FU Y,NI M Y,et al.Research on tomato maturity detection method based on improved YOLOv 4 model [J].Food & Machinery,2023,39(9):134-139.
[15] 王俊平,徐刚.机器视觉和电子鼻融合的番茄成熟度检测方法[J].食品与机械,2022,38(2):148-152.WANG J P,XU G.Research on tomato maturity detection method based on machine vision and electronic nose fusion [J].Food & Machinery,2022,38(2):148-152.
[16] KAUKAB S,KOMAL,GHODKI B M,et al.Improving real-time apple fruit detection:multi-modal data and depth fusion with non-targeted background removal [J].Ecological Informatics,2024,82:102691.
[17] 崔天宇,卢中领,薛琳,等.基于近红外反射光谱的番茄糖分快 速 检 测 模 型 研 究 [J].光 谱 学 与 光 谱 分 析,2023,43(4):1 218-1 224.CUI T Y,LU Z L,XUE L,et al.Research on the rapid detection model of tomato sugar based on near-infrared reflectance spectroscopy [J].Spectroscopy and Spectral Analysis,2023,43(4):1 218-1 224.
[18] 刘光宪,王丽,李雪,等.3种天然抗氧化剂对腊肉理化性质的影响 [J].食品安全质量检测学报,2021,12(15):6 177-6 184.LIU G X,WANG L,LI X,et al.Effects of 3 kinds of natural antioxidants on physicochemical properties of Chinese cured meat [J].Journal of Food Safety & Quality,2021,12(15):6 177-6 184.
[19] DONG P,FENG W H,WANG R,et al.Automatic classification and detection of faulty packaging using deep learning algorithms:a study for industrial applications [J].Intelligent Methods in Engineering Sciences,2024,3(1):13-21.
[20] 戴海宸,韦鑫宇,徐一新,等.基于相位和高光谱的番茄果实多模态融合检测方法 [J].光子学报,2024,53(7):268-282.DAI H C,WEI X Y,XU Y X,et al.Multimodal fusion detection method of tomato fruit based on phase and hyperspectral [J].Acta Photonica Sinica,2024,53(7):268-282.
[21] 韩 子 馨,张 丽 丽,张 博,等.新 型 无 损 检 测 技 术 在 番 茄 品 质检 测 中 的 研 究 与 应 用 进 展 [J].食 品 科 学,2024,45(1):289-300.HAN Z X,ZHANG L L,ZHANG B,et al.Progress on research and application of new non-destructive testing techniques in tomato quality inspection [J].Food Science,2024,45(1):289-300.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.