Abstract
[Objective] To solve the problem of low detection accuracy in existing nondestructive detection methods for navel orange sugar content. [Methods] Based on the analysis of detection schemes, a multi-information integration method for nondestructive detection of navel orange sugar content is proposed. Data collection is conducted using spectral detection technology, machine vision technology, and electronic nose technology. Spectral data is obtained by competitive adaptive weighted sampling of 17 wavelength variables. The principal component analysis is applied to extract 6 features from machine vision data and 4 features from electronic nose sensor data, which are then used as inputs to an improved RBF neural network model for sugar content detection. [Results] Compared with conventional detection methods, the proposed multi-information integration method extracts features more comprehensively, resulting in higher detection accuracy and efficiency. The coefficient of determination is 0.960 8, the root mean square error is 0.083 2 ° Brix, and the average detection time is 0.154 s. [Conclusion] This scheme improves the detection accuracy of navel orange sugar content and has certain reference value.
Publication Date
1-13-2026
First Page
59
Last Page
65
DOI
10.13652/j.spjx.1003.5788.2024.60160
Recommended Citation
Xiaotian, HE; Wenfan, WANG; Jie, SHEN; and Erlin, TIAN
(2026)
"Application of multi-information integration technology in nondestructive detection of navel orange sugar content,"
Food and Machinery: Vol. 41:
Iss.
12, Article 8.
DOI: 10.13652/j.spjx.1003.5788.2024.60160
Available at:
https://www.ifoodmm.cn/journal/vol41/iss12/8
References
[1] 王超,刘言,夏珍珍,等.基于近红外光谱技术的小龙虾新鲜度快速检测研究 [J].光谱学与光谱分析,2023,43(1):156-161.WANG C,LIU Y,XIA Z Z,et al.Fast evaluation of freshness in crayfish (Prokaryophyllus clarkii ) cased on near-infrared spectroscopy [J].Spectroscopy and Spectral Analysis,2023,43(1):156-161.
[2] 宁文楷,李静,沈晓东,等.南瓜干燥过程中 β-胡萝卜素的多源融合预测 [J].浙江农业学报,2023,35(8):1 876-1 887.NING W K,LI J,SHEN X D,et al.Prediction of multi-source fusion of β-carotene during pumpkin drying [J].Acta Agriculturae Zhejiangensis,2023,35(8):1 876-1 887.
[3] 李英辉,王晓寰,赵翠俭.多特征融合方法在马铃薯图像快速检测中的应用 [J].机械设计与制造,2024 (8):54-58.LI Y H,WANG X H,ZHAO C J.Application of multi-feature fusion method in fast detection of potato images [J].Machinery Design & Manufacture,2024 (8):54-58.
[4] 许丽佳,陈铭,王玉超,等.高光谱成像的猕猴桃糖度无损检测方法 [J].光谱学与光谱分析,2021,41(7):2 188-2 195.XU L J,CHEN M,WANG Y C,et al.Study on non-destructive detection method of kiwifruit sugar content based on hyperspectral imaging technology [J].Spectroscopy and Spectral Analysis,2021,41(7):2 188-2 195.
[5] 孟庆龙,尚静,黄人帅,等.基于主成分回归的猕猴桃可溶性固形物无损检测 [J].包装工程,2021,42(3):19-24.MENG Q L,SHANG J,HUANG R S,et al.Nondestructive detection for soluble solids content of kiwifruits based on principal component regression [J].Packaging Engineering,2021,42(3):19-24.
[6] 王俊平,徐刚.机器视觉和电子鼻融合的番茄成熟度检测方法[J].食品与机械,2022,38(2):148-152.WANG J P,XU G.Research on tomato maturity detection method based on machine vision and electronic nose fusion [J].Food & Machinery,2022,38(2):148-152.
[7] 韩子馨,张丽丽,张博,等.新型无损检测技术在番茄品质检测中的研究与应用进展 [J].食品科学,2024,45(1):289-300.HAN Z X,ZHANG L L,ZHANG B,et al.Progress on research and application of new non-destructive testing techniques in tomato quality inspection [J].Food Science,2024,45(1):289-300.
[8] 杨明丽,纠海峰,邓薇.基于气味检测的红富士苹果新鲜度识别方法研究 [J].国外电子测量技术,2024,43(10):91-101.YANG M L,JIU H F,DENG W.Research on the freshness recognition method of red Fuji apples based on odor detection[J].Foreign Electronic Measurement Technology,2024,43(10):91-101.
[9] 丛军,李星.基于电子鼻、电子舌技术的荣昌猪肉及其制品贮藏过程新鲜度检测研究 [J].食品安全质量检测学报,2024,15(7):1 876-1 887.CONG J,LI X.Detection of freshness of Rongchang pork and its products during storage based on electronic nose and electronic tongue technology [J].Journal of Food Safety & Quality,2024,15(7):1 876-1 887.
[10] 孙宇朝,李守豪,夏秀波,等.利用改进 YOLOv 5s 模型检测番 茄 果 实 成 熟 度 及 外 观 品 质 [J].园 艺 学 报,2024,51(2):396-410.SUN Y C,LI S H,XIA X B,et al.Detecting tomato fruit ripeness and appearance quality based on improved YOLOv 5s[J].Acta Horticulturae Sinica,2024,51(2):396-410.
[11] 康明月,王成,孙鸿雁,等.基于改进的 WOA-LSSVM 樱桃番茄 内 部 品 质 检 测 方 法 研 究 [J].光 谱 学 与 光 谱 分 析,2023,43(11):3 541-3 550.KANG M Y,WANG C,SUN H Y,et al.Research on internal quality detection method of cherry tomatoes based onimproved WOA-LSSVM [J].Spectroscopy and Spectral Analysis,2023,43(11):3 541-3 550.
[12] 崔天宇,卢中领,薛琳,等.基于近红外反射光谱的番茄糖分快 速 检 测 模 型 研 究 [J].光 谱 学 与 光 谱 分 析,2023,43(4):1 218-1 224.CUI T Y,LU Z L,XUE L,et al.Research on the rapid detection model of tomato sugar based on near infrared reflectance spectroscopy [J].Spectroscopy and Spectral Analysis,2023,43(4):1 218-1 224.
[13] 沈海军,张汤磊,许振兴,等.基于 Fisher 判别分析对苹果新鲜度的识别研究 [J].食品工业科技,2023,44(4):361-368.SHEN H J,ZHANG T L,XU Z X,et al.Recognition of apple freshness based on fisher discriminant analysis [J].Science and Technology of Food Industry,2023,44(4):361-368.
[14] 刘雪,沈长盈,吕学泽,等.基于改进 MobileNetV 3 - Large 的鸡 蛋 新 鲜 度 识 别 模 型 [J].农 业 工 程 学 报,2022,38(17):196-204.LIU X,SHEN C Y,LV X Z,et al.Recognizing egg freshness using an improved MobileNetV 3-Large [J].Transactions of the Chinese Society of Agricultural Engineering,2022,38(17):196-204.
[15] 焦俊,王文周,侯金波,等.基于改进残差网络的黑毛猪肉新鲜度识别方法 [J].农业机械学报,2019,50(8):364-371.JIAO J,WANG W Z,HOU J B,et al.Freshness identification of iberico pork based on improved residual network [J].Transactions of the Chinese Society for Agricultural Machinery,2019,50(8):364-371.
[16] 杨志锐,郑宏,郭中原,等.基于网中网卷积神经网络的红枣缺陷检测 [J].食品与机械,2020,36(2):140-145,181.YANG Z R,ZHENG H,GUO Z Y,et al.Detection of jujube defects based on the neural network with network convolution[J].Food & Machinery,2020,36(2):140-145,181.
[17] 文韬,代兴勇,李浪,等.基于机器视觉与光谱融合的柑橘品质无损检测分级系统设计与试验 [J].江苏大学学报 (自然科学版 ),2024,45(1):38-45.WEN T,DAI X Y,LI L,et al.Design and experiment of non-destructive testing and grading system for citrus quality based on machine vision and spectral fusion [J].Journal of Jiangsu University (Natural Science Edition ),2024,45(1):38-45.
[18] 孙潇鹏,刘灿灿,陆华忠,等.基于近红外透射光谱与机器视觉 的 蜜 柚 汁 胞 粒 化 分 级 检 测 [J].食 品 科 学 技 术 学 报,2021,39(1):37-45.SUN X P,LIU C C,LU H Z,et al.Detection of honey pomelo in different granulation levels based on near-infrared transmittance spectroscopy combined with machine vision [J].Journal of Food Science and Technology,2021,39(1):37-45.
[19] 万薇,卜莹雪,王祥,等.基于改进 ResNet 模型的食品新鲜度识别方法 [J].食品与机械,2023,39(9):123-127.WAN W,BU Y X,WANG X,et al.Food freshness recognition method based on improved ResNet model [J].Food & Machinery,2023,39(9):123-127.
[20] 刘燕德,王舜.基于图像和光谱融合的脐橙货架期高光谱成像无损检测研究 [J].光谱学与光谱分析,2022,42(6):1 792-1 797.LIU Y D,WANG S.Research on non-destructive testing of navel orange shelf life imaging based on hyperspectral image and spectrum fusion [J].Spectroscopy and Spectral Analysis,2022,42(6):1 792-1 797.
