Abstract
[Objective] To develop an effective method for inhibiting Botrytis cinerea in tomatoes.[Methods] The effect of the addition amount of nanomaterial and light exposure time in chiral gold -modified TiO2 (DAT ) composite materials on the inhibition of B.cinerea in tomatoes was studied through colony diameter and antibacterial rate.The mechanism of action of DAT on B.cinerea was explored by analyzing mycelial biomass,nucleic acid and protein leakage,and fungal cell structure.[Results]] When the chiral nano -gold addition was 80 μL,the DAT concentration was 5 mg/mL,and the natural light exposure time was 24 hours,the highest inhibition rate of DAT against B.cinerea was 53.64%.DAT nanomaterials generated free radicals under light exposure,disrupting the cell membrane,causing extensive leakage of fungal nucleic acids and proteins,and inhibiting the growth of B.cinerea mycelia.The surfaces of B.cinerea mycelia treated with DAT were rough,wrinkled,and damaged,effectively destroying the mycelial structure of B.cinerea.[Conclusion] DAT can effectively destroy the cell membrane and mycelial structure of B.cinerea in tomatoes,inhibiting the growth and reproduction of B.cinerea.
Publication Date
4-25-2025
First Page
26
Last Page
32
DOI
10.13652/j.spjx.1003.5788.2024.80726
Recommended Citation
Jie, ZOU; Jinzhu, SONG; Xinglei, GUO; Xinxuan, LI; Yongbiao, NI; and Wenjing, YAN
(2025)
"Photocatalytic bactericidal effect of chiral gold-modified TiO 2 nanoparticles on Botrytis cinerea in tomatoes,"
Food and Machinery: Vol. 41:
Iss.
3, Article 4.
DOI: 10.13652/j.spjx.1003.5788.2024.80726
Available at:
https://www.ifoodmm.cn/journal/vol41/iss3/4
References
[1] CHENG J R,MILLER B,BALBUENA E,et al.Lycopene protects against smoking-induced lung cancer by inducing base excision repair [J].Antioxidants,2020,9(7):643.
[2] PATARO G,CARULLO D,FALCONE M,et al.Recovery of lycopene from industrially derived tomato processing by-products by pulsed electric fields-assisted extraction [J].Innovative Food Science & Emerging Technologies,2020,63:102369.
[3] 高雅.外源硒和硅对番茄生长发育及番茄灰霉病的抗性作用机制研究 [D].雅安:四川农业大学,2023:3-4.GAO Y.Study on the mechanism of exogenous selenium and silicon on tomato growth and development and resistance to tomato gray mold [D].Ya'an:Sichuan Agricultural University,2023:3-4.
[4] 胡永静,叶欣悦,须文.折耳根提取液对番茄灰霉病菌的抑菌活性分析 [J].蔬菜,2022 (11):44-49.HU Y J,YE J Y,XU W.Analysis of the antibacterial activity of the extract from houttuynia cordata on inhibition of botrytis cinerea of tomato [J].Vegetables,2022 (11):44-49.
[5] 周宝利,尚淼,孟思达,等.蛇床子提取物对番茄灰霉病菌的抑制效果 [J].西北农业学报,2012,21(2):137-141.ZHOU B L,SHANG M,MENG S D,et al.Inhibitory effects of fructus cnidii extracts on tomato Botrytis cinerea [J].Acta Agriculturae Boreali-occidentalis Sinica,2012,21(2):137-141.
[6] 王方方,付清泉,史学伟,等.灰霉病致病机理及其防治措施研究进展 [J].中国果菜,2024,44(1):47-53.WANG F F,FU Q Q,SHI X W,et al.Research progress on the pathogenesis and control measures of grey mould [J].China Fruit & Vegetable,2024,44(1):47-53.
[7] 张相国.不同杀菌剂对西红柿灰霉病的防治效果比较 [J].中国农业文摘,2023,35(4):17-21.ZHANG X G.Comparison of control effects of different fungicides on tomato gray mold [J].Agricultural Science and Engineering in China,2023,35(4):17-21.
[8] 裴艳刚,朱宇航,岁立云,等.四川猕猴桃灰霉病菌对 4种杀菌剂的抗药性检测 [J].植物保护,2021,47(4):180-185.PEI Y G,ZHU Y H,SHUI Y L,et al.Detection of the resistance of Botrytis cinerea from kiwifruit to four fungicides in Sichuan[J].Plant Protection,2021,47(4):180-185.
[9] HUA C Y,KAI K,BI W L,et al.Curcumin induces oxidative stress in Botrytis cinerea,resulting in a reduction in gray mold decay in kiwifruit [J].Journal of Agricultural and Food 字母不同表示同组数据差异显著 (P<0.05)Chemistry,2019,67(28):7 968-7 976.
[10] 林正远.光催化纳米二氧化钛材料及其应用 [J].中国新通信,2019,21(1):226-227.LIN Z Y.Photocatalytic nanometer titanium dioxide material and its application [J].China New Telecommunications,2019,21(1):226-227.
[11] 张江涛,朱光明,吴海林,等.铜负载二氧化钛复合材料的制备及其抗菌性能 [J].材料科学与工程学报,2016,34(6):884-889,922.ZHANG J T,ZHU G M,WU H L,et al.Preparation of copper loaded titanium dioxide composites and its antibacterial properties [J].Journal of Materials Science and Engineering,2016,34(6):884-889,922.
[12] QIU L,YANG H H,LEI F,et al.Studies on the bacteriostasis of nano-silver on the pathogenic fungus Botrytis cinerea from illed plants [J].Applied Mechanics and Materials,2014,651/652/653:352-361.
[13] XU Y L,WANG H X,ZHANG M,et al.Plasmon-enhanced antibacterial activity of chiral gold nanoparticles and in vivo therapeutic effect [J].Nanomaterials,2021,11(6):1 621.
[14] CUI M T,WANG H,FAN X,et al.Photocatalytic degradation of four organophosphorus pesticides in aqueous solution using D-cys/Au NPs modified TiO2 by natural sunlight [J].Applied Surface Science,2024,663:160197.
[15] 王彦梅.硅藻土与微晶白云母负载纳米 TiO2光催化降解亚甲基蓝 [D].成都:成都理工大学,2010:34.WANG Y M.Photocatalytic degradation of methylene blue solution by titania supported on diatomite and micro-crystal muscovite [D].Chengdu:Chengdu University of Technology,2010:34.
[16] SCHNEIDER J,MATSUOKA M,TAKEUCHI M,et al.Understanding TiO2 photocatalysis:mechanisms and materials[J].Chemical Reviews,2014,114(19):9 919-9 986.
[17] SLAVIN Y N,ASNIS J,HÄFELI U O,et al.Metal nanoparticles:understanding the mechanisms behind antibacterial activity [J].Journal of Nanobiotechnology,2017,15(1):65.
[18] ZHAO X H,JIA Y X,LI J J,et al.Indole derivative-capped gold nanoparticles as an effective bactericide in vivo [J].ACS Applied Materials & Interfaces,2018,10(35):29 398-29 406.
[19] HAMID N,TELGI R L,TIRTH A,et al.Titanium dioxide nanoparticles and cetylpyridinium chloride enriched glass-ionomer restorative cement:a comparative study assessing compressive strength and antibacterial activity [J].The Journal of Clinical Pediatric Dentistry,2019,43(1):42-45.
[20] ELSAKA S E,HAMOUDA I M,SWAIN M V.Titanium dioxide nanoparticles addition to a conventional glass-ionomer restorative:influence on physical and antibacterial properties[J].Journal of Dentistry,2011,39(9):589-598.
[21] 柳准,徐启杰,张莉莉,等.TiO2/Cu复合材料的光催化降解和抗菌性能研究及机理分析 [J].化工新型材料,2023,51(9):209-212,219.LIU Z,XU Q J,ZHANG L L,et al.Studies on the photocatalytic degradation and antimicrobial properties of TiO2/Cu composite as well as the mechanism [J].New Chemical Materials,2023,51(9):209-212,219.
[22] AKHAVAN O,CHOOBTASHANI M,GHADERI E.Protein degradation and RNA efflux of viruses photocatalyzed by graphene-tungsten oxide composite under visible light irradiation [J].The Journal of Physical Chemistry C,2012,116(17):9 653-9 659.
[23] 王鹏鸽,张静,王震宇,等.光催化反应中活性氧物种产生及抗菌机制研究 [J].地球环境学报,2023,14(5):539-556.WANG P G,ZHANG J,WANG Z Y,et al.Generation and antimicrobial mechanisms of reactive oxygen species in photocatalysis [J].Journal of Earth Environment,2023,14(5):539-556.
[24] 李园.改性 TiO2纳米管阵列光催化抑制青霉菌研究 [D].广州:华南农业大学,2016:32-33.LI Y.Study on photocatalytic inhibition of penicillium by modified TiO2 nanotube arrays [D].Guangzhou:South China Agricultural University,2016:32-33.