•  
  •  
 

Corresponding Author(s)

许新华(1986—),女,郑州西亚斯学院讲师,硕士。E-mail:bbbff34@yeah.net

Abstract

[Objective] To improve the classification accuracy of pork species by building an identification model based on near -infrared spectroscopy and PCA -DBN -SVM.[Methods] Combining the near -infrared spectroscopy characteristics of pork,principal component analysis (PCA ) is used for dimensionality reduction and feature extraction,and DBN -SVM is then applied for classification and recognition to construct a pork species identification method that integrates near -infrared spectroscopy characteristics with PCA -DBN -SVM model.[Results]] Compared with the KNN model,RF model,ELM,and DBN combination model,the PCA -DBN -SVM model has the highest classification accuracy of pork species,which reaches 99.91%.[Conclusion] The PCA -DBN -SVM model exhibits superior classification accuracy.

Publication Date

4-25-2025

First Page

50

Last Page

56

DOI

10.13652/j.spjx.1003.5788.2024.60140

References

[1] 刘媛媛,彭彦昆,王文秀,等.基于偏最小二乘投影的可见 /近红外光谱猪肉综合品质分类 [J].农业工程学报,2014,30(23):306-313.LIU Y Y,PENG Y K,WANG W X,et al.Classification of pork comprehensive quality based on partial least squares projection and Vis/NIR spectroscopy [J].Transactions of the Chinese Society of Agricultural Engineering,2014,30(23):306-313.
[2] 贾渊,李振江,彭增起.结合 LLE流形学习和支持向量机的猪肉颜色分级 [J].农业工程学报,2012,28(9):147-152.JIA Y,LI Z J,PENG Z Q.Pork color grading based on LLE manifold learning and support vector machine [J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(9):147-152.
[3] MONROY M,PRASHER S,NGADI M O,et al.Pork meat quality classification using Visible/Near-Infrared spectroscopic data[J].Biosystems Engineering,2010,107(3):271-276.
[4] 付淑亚,谢安国,刘云宏.二维相关红外光谱和高光谱成像技术检测黄精干燥过程中多糖的变化 [J].食品与机械,2024,40(8):33-39.FU S Y,XIE A G,LIU Y H.Two - dimensional correlation infrared spectroscopy and hyperspectral imaging to detect the changes of polysaccharide during the drying process of Polygonatum sibiricum [J].Food & Machinery,2024,40(8):33-39.
[5] RØDBOTTEN R,NILSEN B N,HILDRUM K I.Prediction of beef quality attributes from early post mortem near infrared reflectance spectra [J].Food Chemistry,2000,69(4):427-436.
[6] 陈亦凡,李芸婧,彭苗苗,等.MIV波长优选改善 VIS/NIR 光谱TVB-N模型性能研究 [J].光谱学与光谱分析,2020,40(5):1 413-1 419.CHENG Y F,LI Y J,PENG M M,et al.Improvements of VIS-NIR spectroscopy model in the prediction of TVB-N using MIV wavelength selection [J].Spectroscopy and Spectral Analysis,2020,40(5):1 413-1 419.
[7] 董学锋,戴连奎,黄承伟.结合 PLS-DA 与SVM的近红外光谱软测量方法 [J].浙江大学学报 (工学版 ),2012,46(5):824-829.DONG X F,DAI L K,HUANG CH W.Near-infrared spectroscopy soft-sensing method by combining partial least squares discriminant analysis and support vector machine [J].Journal of Zhejiang University (Engineering Science ),2012,46(5):824-829.
[8] 郭志明,赵春江,黄文倩,等.苹果糖度高光谱图像可视化预测的光强度校正方法 [J].农业机械学报,2015,46(7):227-232.GUO Z M,ZHAO C J,HUANG W Q,et al.Intensity correction of visualized prediction for sugar content in apple using hyperspectral imaging [J].Transactions of the Chinese Society for Agricultural Machinery,2015,46(7):227-232.
[9] ZHAO J W,OUYANG Q,CHEN Q S,et al.Simultaneous determination of amino acid nitrogen and total acid in soy sauce using near infrared spectroscopy combined with characteristic variables selection [J].Food Science and Technology International,2013,19(4):305-314.
[10] 徐瑞煜,朱焯炜,胡扬俊,等.三维荧光光谱结合 PCA-SVM对几种浓香型白酒的鉴别 [J].光谱学与光谱分析,2016,36(4):1 021-1 026.XU R Y,ZHU Z W,HU Y J,et al.The discrimination of Chinese strong aroma type liquors with three-dimensional fluorescence spectroscopy combined with principal component analysis and support vector machine [J].Spectroscopy and Spectral Analysis,2016,36(4):1 021-1 026.
[11] 陈淑一,赵全明,董大明.对比主成分分析的近红外光谱测量及其在水果农药残留识别中的应用 [J].光谱学与光谱分析,2020,40(3):917-921.CHEN S Y,ZHAO Q M,DONG D M.Application of near infrared spectroscopy combined with comparative principal component analysis for pesticide residue detection in fruit [J].Spectroscopy and Spectral Analysis,2020,40(3):917-921.
[12] DAMI S,YAHAGHIZADEH M.Predicting cardiovascular events with deep learning approach in the context of the internet of things [J].Neural Computing and Applications,2021,33(13):7 979-7 996.
[13] KANG S,KYUNKIM S.Outlier behavior detection for indoor environment based on t-SNE clustering [J].Computers,Materials & Continua,2021,68(3):3 725-3 736.
[14] 贺凯迅,曹鹏飞.基于智能优化算法的软测量模型建模样本优选及应用 [J].化工进展,2018,37(7):2 516-2 523.HE K X,CAO P F.Training sample selection method based on intelligent optimization algorithms for soft sensor and its application [J].Chemical Industry and Engineering Progress,2018,37(7):2 516-2 523.
[15] 章恺,朱丽芳,李入林,等.基于改进 WOA-LSSVM 和高光谱的猕猴桃糖度无损检测 [J].食品与机械,2024,40(5):107-112,226.ZHANG K,ZHU L F,LI R L,et al.Nondestructive detection of kiwifruit sugar content based on improved WOA-LSSVM and hyperspectral analysis [J].Food & Machinery,2024,40(5):107-112,226.
[16] 陈珏,李佳琮,刘翠玲,等.荧光光谱技术结合机器学习算法检测大白菜中吡虫啉含量 [J].食品安全质量检测学报,2023,14(13):134-140.CHEN J,LI J C,LIU C L,et al.Determination of imidacloprid in cabbage by fluorescence spectroscopy combined with machine learning algorithms [J].Journal of Food Safety and Quality,2023,14(13):134-140.
[17] 程朋飞,朱燕萍,潘金燕,等.三维荧光光谱结合 IGOA-SVM分类鉴别油类污染物 [J].光谱学与光谱分析,2024,44(4):1 031-1 038.CHENG P F,ZHU Y P,PAN J Y,et al.Classification of oil pollutants by three-dimensional fluorescence spectroscopy combined with IGOA-SVM [J].Spectroscopy and Spectral Analysis,2024,44(4):1 031-1 038.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.