Metabolic engineering of Saccharomyces cerevisiae for de novo biosynthesis of naringin from D-xylose
Abstract
[Objective] To explore the biosynthesis method of naringin,a bioactive compound in citrus.[Methods] Engineered Saccharomyces cerevisiae strains for naringenin biosynthesis are constructed through enzyme screening,multi -copy integration,and precursor supply.Subsequently,de novo biosynthesis of naringin from D-xylose is achieved by introducing the naringin biosynthetic pathway and optimizing UDP -glucose supply.[Results]] The optimal flavonoid synthase is identified as PhCHS by screening the key enzymes of the naringenin pathway.The naringenin biosynthesis pathway is further integrated at multi -copy sites.The constructed strain Z39M2 can synthesize 36.53 mg/L naringenin.The overexpression of CAT 2,xPK-PTA pathway,and ACC 1m optimizes malonyl -CoA supply and constructs strain Z 44,with a naringenin production increasing to 72.96 mg/L.Finally,the naringin biosynthesis pathway introduction enables the successful biosynthesis of 35.60 mg/L naringin.Further overexpression of PGM 1 and UGP 1 elevates naringin production to 76.67 mg/L.[Conclusion] An engineered S.cerevisiae strain capable of de novo biosynthesis of naringin from D-xylose is successfully constructed by metabolic engineering.
Publication Date
7-3-2025
First Page
1
Last Page
8
DOI
10.13652/j.spjx.1003.5788.2025.80274
Recommended Citation
Yifei, ZHAO; Gaoyang, LI; Luhong, HUANG; Juan, LIU; and Zhiqiang, XIAO
(2025)
"Metabolic engineering of Saccharomyces cerevisiae for de novo biosynthesis of naringin from D-xylose,"
Food and Machinery: Vol. 41:
Iss.
6, Article 1.
DOI: 10.13652/j.spjx.1003.5788.2025.80274
Available at:
https://www.ifoodmm.cn/journal/vol41/iss6/1
References
[1] 刘丹,郭欢,吴笛,等.柑橘黄酮类化合物的提取新技术及生物活性研究进展 [J].食品与机械,2022,38(11):217-224.LIU D,GUO H,WU D,et al.Research progress on new extraction technologies and bioactivities of flavonoids from orange [J].Food & Machinery,2022,38(11):217-224.
[2] SHEN N,WANG T F,GAN Q,et al.Plant flavonoids:classification,distribution,biosynthesis,and antioxidant activity[J].Food Chemistry,2022,383:132531.
[3] 张珊,黄雪松.高效液相色谱法同时测定柚子中的 4种黄酮苷和柠檬苦素 [J].食品与机械,2021,37(3):58-63.ZHANG S,HUANG X S.Simultaneous determination of four flavonoid glycosides and limonin in pomelo by HPLC [J].Food & Machinery,2021,37(3):58-63.
[4] BARRECA D,GATTUSO G,BELLOCCO E,et al.Flavanones:citrus phytochemical with health-promoting properties [J].BioFactors,2017,43(4):495-506.
[5] WANG D,SHI L Y,XIN W,et al.Activation of PPAR γ inhibits pro-inflammatory cytokines production by upregulation of miR-124 in vitro and in vivo [J].Biochemical and Biophysical Research Communications,2017,486(3):726-731.
[6] SHILPA V S,SHAMS R,DASH K K,et al.Phytochemical properties,extraction,and pharmacological benefits of naringin:a review [J].Molecules,2023,28(15):5 623.
[7] SHEN Y Y,LIU F,ZHANG M J.Therapeutic potential of plant-derived natural compounds in Alzheimer's disease:targeting microglia-mediated neuroinflammation [J].Biomedicine & Pharmacotherapy,2024,178:117235.
[8] CHEN J,QIN X,CHEN M Y,et al.Biological activities,molecular mechanisms,and clinical application of naringin in metabolic syndrome [J].Pharmacological Research,2024,202:107124.
[9] LOU H H,HU L F,LU H Y,et al.Metabolic engineering of microbial cell factories for biosynthesis of flavonoids:a review[J].Molecules,2021,26(15):4 522.
[10] WANG J,CHEN C,GUO Q,et al.Advances in flavonoid and derivative biosynthesis:systematic strategies for the construction of yeast cell factories [J].ACS Synthetic Biology,2024,13(9):2 667-2 683.
[11] 马玉玉,宋伟,冯小娜,等.泛酸合成酶菌株筛选及其催化生产D-泛酸的研究 [J].食品与机械,2020,36(6):28-35.MA Y Y,SONG W,FENG X N,et al.Strain screening of pantothenate synthetase and catalysis to produce D-pantothenic acid[J].Food & Machinery,2020,36(6):28-35.
[12] 成婷,苑帅,张晓元,等.酿酒酵母异丁醇合成途径调控的研究进展 [J].生物技术通报,2023,39(7):80-90.CHENG T,YUAN S,ZHANG X Y,et al.Research progress in the regulation of isobutanol synthesis pathway in Saccharomyces cerevisiae [J].Biotechnology Bulletin,2023,39(7):80-90.
[13] 邢敏钰,冉淦侨,谭丹.酿酒酵母中萜类化合物的生物合成与代谢调控研究进展 [J].生物工程学报,2024,40(6):1 661-1 693.XING M Y,RAN G Q,TAN D.Advances in the biosynthesis and metabolic regulation of terpenoids in Saccharomyces cerevisiae [J].Chinese Journal of Biotechnology,2024,40(6):1 661-1 693.
[14] LI H B,MA W J,WANG W G,et al.Synergetic engineering of multiple pathways for De novo (2S)-naringenin biosynthesis in Saccharomyces cerevisiae [J].ACS Sustainable Chemistry & Engineering,2024,12(1):59-71.
[15] DU Y,YANG B R,YI Z Q,et al.Engineering Saccharomyces cerevisiae coculture platform for the production of flavonoids[J].Journal of Agricultural and Food Chemistry,2020,68(7):2 146-2 154.
[16] WANG Y T,XIAO Z Q,ZHANG S Q,et al.Systematic engineering of Saccharomyces cerevisiae for the de novo biosynthesis of genistein and glycosylation derivatives [J].Journal of Fungi,2024,10(3):176.
[17] LIU Q L,LIU Y,LI G,et al.De novo biosynthesis of bioactive isoflavonoids by engineered yeast cell factories [J].Nature Communications,2021,12(1):6 085.
[18] KWAK S,JO J H,YUN E J,et al.Production of biofuels and chemicals from xylose using native and engineered yeast strains [J].Biotechnology Advances,2019,37(2):271-283.
[19] QIU Y L,WU M L,BAO H D,et al.Engineering of Saccharomyces cerevisiae for co-fermentation of glucose and xylose:current state and perspectives [J].Engineering Microbiology,2023,3(3):100084.
[20] LI X W,WANG Y Y,LI G,et al.Metabolic network remodelling enhances yeast's fitness on xylose using aerobic glycolysis [J].Nature Catalysis,2021,4(93):783-796.
[21] XU H Q,KIM S,SOREK H,et al.PHO 13 deletion-induced transcriptional activation prevents sedoheptulose accumulation during xylose metabolism in engineered Saccharomyces cerevisiae [J].Metabolic Engineering,2016,34:88-96.
[22] SUN L,LEE J W,YOOK S,et al.Complete and efficient conversion of plant cell wall hemicellulose into high-value bioproducts by engineered yeast [J].Nature Communications,2021,12(1):4 975.
[23] LEE J W,KWAK S,LIU J J,et al.Enhanced 2'-fucosyllactose production by engineered Saccharomyces cerevisiae using xylose as a co-substrate [J].Metabolic Engineering,2020,62:322-329.
[24] BORJA G M,RODRIGUEZ A,CAMPBELL K,et al.Metabolic engineering and transcriptomic analysis of Saccharomyces cerevisiae producing p-coumaric acid from xylose [J].Microbial Cell Factories,2019,18(1):191.
[25] QIU Z T,HAN Y M,LI J,et al.Metabolic division engineering of Escherichia coli consortia for de novo biosynthesis of flavonoids and flavonoid glycosides [J].Metabolic Engineering,2025,89:60-75.
[26] XIAO Z Q,WANG Y T,LIU J,et al.Systematic engineering of Saccharomyces cerevisiae chassis for efficient flavonoid- 7-O-disaccharide biosynthesis [J].ACS Synthetic Biology,2023,12(9):2 740-2 749.
[27] 童颖佳.代谢工程和酶工程改造酿酒酵母高效合成 (2S)-柚皮素 [D].无锡:江南大学,2022:11-26.TONG Y J.Metabolic and enzymatic engineering of Saccharomyces cerevisiae to efficiently biosynthesize the (2S)-naringenin [D].Wuxi:Jiangnan University,2022:11-26.
[28] MAO J W,MOHEDANO M T,FU J,et al.Fine-tuning of p-coumaric acid synthesis to increase (2S)-naringenin production in yeast [J].Metabolic Engineering,2023,79:192-202.
[29] DU F,LI Z J,LI X,et al.Optimizing multicopy chromosomal integration for stable high-performing strains [J].Nature Chemical Biology,2024,20(12):1 670-1 679.
[30] YOCUM H C,BASSETT S,DA SILVA N A.Enhanced production of acetyl-CoA-based products via peroxisomal surface display in Saccharomyces cerevisiae [J].Proceedings of the National Academy of Sciences of the United States of America,2022,119(48):e2214941119.
[31] MEADOWS A L,HAWKINS K M,TSEGAYE Y,et al.Rewriting yeast central carbon metabolism for industrial isoprenoid production [J].Nature,2016,537(7 622):694-697.
[32] MOHEDANO M T,MAO J W,CHEN Y.Optimization of pinocembrin biosynthesis in Saccharomyces cerevisiae [J].ACS Synthetic Biology,2023,12(1):144-152.
[33] FENG Y Y,YAO M D,WANG Y,et al.Advances in engineering UDP-sugar supply for recombinant biosynthesis of glycosides in microbes [J].Biotechnology Advances,2020,41:107538.