•  
  •  
 

Corresponding Author(s)

高燕飞(1983—),女,山西省财政税务专科学校副教授,博士。E-mail:nfgsfqq@sina.com

Abstract

[Objective] To address the low efficiency and strong subjectivity of traditional manual tomato grading,this study developed an online tomato internal and external quality detection and grading system based on the Internet of Things (IoT) and machine learning technologies,enabling real -time,non -destructive detection of both internal and external quality attributes.[Methods] By integrating machine vision and near -infrared spectroscopy,and leveraging IoT and machine learning algorithms,a comprehensive system for online,non-destructive tomato detection and grading was designed and implemented.Real -time acquisition of external images and internal spectral information of tomatoes was performed.External defects,shape index,and diameter were detected using deep learning models,while soluble solids content and firmness were predicted using near -infrared spectroscopy.Ultimately,this enabled online detection and grading of tomato quality.[Results]] The system demonstrated excellent performance:the accuracy of external quality detection reached 94.9%,internal quality prediction accuracy was 87.3%,and the integrated grading accuracy improved to 88.5%.The system achieved a processing efficiency of 19 tomatoes per minute.[Conclusion] By synergistically optimizing machine vision and near -infrared spectroscopy,the system overcomes the limitations of traditional single -attribute detection approaches,significantly improving the accuracy and efficiency of internal and external quality grading of tomatoes.

Publication Date

7-11-2025

First Page

78

Last Page

85

DOI

10.13652/j.spjx.1003.5788.2025.60016

References

[1] 燕红文.基于机器视觉的番茄损伤区域自动检测 [J].无线互联科技,2020,17(11):126-127.YAN H W.Automatic detection of tomato damage area based on machine vision [J].Wireless Internet Technology,2020,17(11):126-127.
[2] ZHANG B H,GU B X,TIAN G Z,et al.Challenges and solutions of optical-based nondestructive quality inspection for robotic fruit and vegetable grading systems:a technical review[J].Trends in Food Science & Technology,2018,81:213-231.
[3] VAN ROY J,KERESZTES J C,WOUTERS N,et al.Measuring colour of vine tomatoes using hyperspectral imaging[J].Postharvest Biology and Technology,2017,129:79-89.
[4] 龙燕,连雅茹,马敏娟,等.基于高光谱技术和改进型区间随机蛙跳算法的番茄硬度检测 [J].农业工程学报,2019,35(13):270-276.LONG Y,LIAN Y R,MA M J,et al.Detection of tomato hardness based on hyperspectral technology and modified interval random frog algorithm [J].Transactions of the Chinese Society of Agricultural Engineering,2019,35(13):270-276.
[5] 王彦群,贾浩坤,范振岐.库尔勒香梨含糖量的近红外光谱检测模型研究 [J].现代计算机,2022,28(18):47-51.WANG Y Q,JIA H K,FAN Z Q.Study on near infrared spectroscopy detection model of sugar content in Korla fragrant pear[J].Modern Computer,2022,28(18):47-51.
[6] 周西福,税云秀,何宇,等.柑橘小型化分级装备的设计及实现[J].制造业自动化,2018,40(9):140-144.ZHOU X F,SHUI Y X,HE Y,et al.Design and implementation of miniaturization and grading equipment for Citrus [J].Manufacturing Automation,2018,40(9):140-144.
[7] 李龙,彭彦昆,李永玉.苹果内外品质在线无损检测分级系统设计与试验 [J].农业工程学报,2018,34(9):267-275.LI L,PENG Y K,LI Y Y.Design and experiment on grading |system for online non-destructive detection of internal and external quality of apple [J].Transactions of the Chinese Society of Agricultural Engineering,2018,34(9):267-275.
[8] 缑新科,常英.基于机器视觉的樱桃番茄在线分级系统设计[J].计算机与数字工程,2020,48(7):1 798-1 803.GOU X K,CHANG Y.Design of cherry tomato online grading system based on machine vision [J].Computer & Digital Engineering,2020,48(7):1 798-1 803.
[9] ZHAO J W,OUYANG Q,CHEN Q S,et al.Simultaneous determination of amino acid nitrogen and total acid in soy sauce using near infrared spectroscopy combined with characteristic variables selection [J].Food Science and Technology International,2013,19(4):305-314.
[10] 刘媛媛,彭彦昆,王文秀,等.基于偏最小二乘投影的可见 /近红外光谱猪肉综合品质分类 [J].农业工程学报,2014,30(23):306-313.LIU Y Y,PENG Y K,WANG W X,et al.Classification of pork comprehensive quality based on partial least squares projection and Vis/NIR spectroscopy [J].Transactions of the Chinese Society of Agricultural Engineering,2014,30(23):306-313.
[11] 陈淑一,赵全明,董大明.对比主成分分析的近红外光谱测量及其在水果农药残留识别中的应用 [J].光谱学与光谱分析,2020,40(3):917.CHEN S Y,ZHAO Q M,DONG D M.Application of near infrared spectroscopy combined with comparative principal component analysis for pesticide residue detection in fruit [J].Spectroscopy and Spectral Analysis,2020,40(3):917.
[13] 郭志明,赵春江,黄文倩,等.苹果糖度高光谱图像可视化预测的光强度校正方法 [J].农业机械学报,2015,46(7):227-232.GUO Z M,ZHAO C J,HUANG W Q,et al.Intensity correction of visualized prediction for sugar content in apple using hyperspectral imaging [J].Transactions of the Chinese Society for Agricultural Machinery,2015,46(7):227-232.
[14] QIAO J,NGADI M O,WANG N,et al.Pork quality and marbling level assessment using a hyperspectral imaging system [J].Journal of Food Engineering,2007,83(1):10-16.
[15] 董学锋,戴连奎,黄承伟.结合 PLS-DA 与SVM的近红外光谱 软 测 量 方 法 [J].浙 江 大 学 学 报 (工 学 版 ),2012,46(5):824-829.DONG X F,DAI L K,HUANG CH W.Near-infrared spectroscopy soft-sensing method by combining partial least squares discriminant analysis and support vector machine [J].Journal of Zhejiang University (Engineering Science ),2012,46(5):824-829.
[16] MONROY M,PRASHER S,NGADI M O,et al.Pork meat quality classification using Visible/Near-Infrared spectroscopic data[J].Biosystems Engineering,2010,107(3):271-276.
[17] WU D,HUANG Y M,CHEN H B,et al.VPPAW penetration monitoring based on fusion of visual and acoustic signals using t-SNE and DBN model [J].Materials & Design,2017,123:1-14.
[18] 陈亦凡,李芸婧,彭苗苗,等.MIV波长优选改善 VIS/NIR 光谱TVB-N模型性能研究 [J].光谱学与光谱分析,2020,40(5):1 413-1 419.CHEN Y F,LI Y J,PENG M M,et al.Improvements of VIS-NIR spectroscopy model in the prediction of TVB-N using MIV wavelength selection [J].Spectroscopy and Spectral Analysis,2020,40(5):1 413-1 419.
[19] 陈珏,李佳琮,刘翠玲,等.荧光光谱技术结合机器学习算法检测大白菜中吡虫啉含量 [J].食品安全质量检测学报,2023,14(13):134-140.CHEN J,LI J C,LIU C L,et al.Determination of imidacloprid in cabbage by fluorescence spectroscopy combined with machine learning algorithms [J].Journal of Food Safety & Quality,2023,14(13):134-140.
[20] 章恺,朱丽芳,李入林,等.基于改进 WOA-LSSVM 和高光谱的猕猴桃糖度无损检测 [J].食品与机械,2024,40(5):107-112,226.ZHANG K,ZHU L F,LI R L,et al.Non destructive detection of kiwifruit sugar content based on improved WOA-LSSVM and hyperspectral analysis [J].Food & Machinery,2024,40(5):107-112,226.
[21] 付淑亚,谢安国,刘云宏.二维相关红外光谱和高光谱成像技术检测黄精干燥过程中多糖的变化 [J].食品与机械,2024,40(8):33-39.FU S Y,XIE A G,LIU Y H.Two-dimensional correlation infrared spectroscopy and hyperspectral imaging to detect the changes of polysaccharide during the drying process of Polygonatum sibiricum [J].Food & Machinery,2024,40(8):33-39.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.