Abstract
[Objective] To improve the efficiency and accuracy of walnut kernel sorting in existing food production lines. [Methods] Based on the intelligent production line for walnut kernel sorting, an improved EfficientDet model is proposed for the intelligent sorting of walnut kernels in food production lines. A convolutional attention mechanism module is introduced into the backbone network to strength the ability of the model to focus on food regions. The bidirectional feature pyramid network is improved to enhance the detection ability of the model for different scales of food. The original activation function is optimized through Dynamic ReLU activation function to enhance the detection performance of the model for food, and the optimized model is deployed in food production for experimental verification. [Results] The experimental method achieves precise recognition and efficient classification of normal, broken shells, black spots, and dried walnut kernels in the walnut kernel sorting task. This method achieves the detection of a single image within 18 ms, with the average accuracy of 97.92% and a false detection rate reduced to 1.0%. This can effectively improve the automation level of the food production line. [Conclusion] This intelligent sorting method effectively solves the problems of low efficiency and poor accuracy of conventional sorting methods, and has good application prospects and promotion value in food production line automation. 引用格式:秦新华,王义亮,李玉贵,等. 基于改进 EfficientDet 的食品生产线核桃仁分选智能化研究 [J]. 食品与机械,2025,41(8):77-84. Citation: QIN Xinhua, WANG Yiliang, LI Yugui, et al. Research on intelligent sorting of walnut kernels in food production lines based on improved EfficientDet [J]. Food & Machinery, 2025, 41(8):77-84.
Publication Date
9-25-2025
First Page
77
Last Page
84
DOI
10.13652/j.spjx.1003.5788.2025.60081
Recommended Citation
Xinhua, QIN; Yiliang, WANG; Yugui, LI; and Jin, LI
(2025)
"Research on intelligent sorting of walnut kernels in food production lines based on improved EfficientDet,"
Food and Machinery: Vol. 41:
Iss.
8, Article 11.
DOI: 10.13652/j.spjx.1003.5788.2025.60081
Available at:
https://www.ifoodmm.cn/journal/vol41/iss8/11
References
[1] 朱豪,周顺勇,刘学,等.基于深度学习的单阶段目标检测算法综述 [J].工业控制计算机,2023,36(4):101-103.ZHU H,ZHOU S Y,LIU X,et al.Survey of single-stage object detection algorithms based on deep learning [J].Industrial Control Computer,2023,36(4):101-103.
[2] CHEN C,WU B,ZHANG H Y.An image recognition technology based on deformable and CBAM convolution Resnet 50[J].IAENG International Journal of Computer Science,2023,50(1):8.
[3] 蔡家一,刘世伟,单龙祥,等.基于机器视觉与 YOLO v 5的裂纹蛋分拣机器人设计与试验 [J].智能化农业装备学报 (中英文),2025,6(1):41-50.CAI J Y,LIU S W,DAN L X,et al.Design and experiment of cracked egg sorting robot based on machine vision and YOLO v5[J].Journal of Intelligent Agricultural Mechanization,2025,6(1):41-50.
[4] 邓姗姗,黄慧,马燕.基于改进 Faster R-CNN 的小目标检测算法[J].计算机工程与科学,2023,45(5):869-877.DENG S S,HUANG H,MA Y.A small object detection algorithm based on improved Faster R-CNN [J].Computer Engineering & Science,2023,45(5):869-877.
[5] HUANG J,REN L F,ZHOU X K,et al.An improved neural network based on SENet for sleep stage classification [J].IEEE Journal of Biomedical and Health Informatics,2022,26(10):4 948-4 956.
[6] 万薇,卜莹雪,王祥,等.基于改进 ResNet模型的食品新鲜度识别方法 [J].食品与机械,2023,39(9):123-127.WAN W,BU Y X,WANG X,et al.Food freshness recognition method based on improved ResNet model [J].Food & Machinery,2023,39(9):123-127.
[7] 夏军勇,王康宇,周宏娣.基于改进 Faster R-CNN 的食品包装缺陷检测 [J].食品与机械,2023,39(11):131-136,151.XIA J Y,WANG K Y,ZHOU H D.Food packaging defect detection by improved network model of Faster R-CNN [J].Food & Machinery,2023,39(11):131-136,151.
[8] 渠述贺,朱占江,沈晓贺,等.核桃壳仁分选技术研究现状与展望 [J].中国农机化学报,2023,44(12):71-79.QU S H,ZHU Z J,SHEN X H,et al.Research status and prospect of walnut shell kernel separation technology [J]. Journal of Chinese Agricultural Mechanization,2023,44(12):71-79.
[9] 颜旭,王应彪,张兆顺,等.基于图像处理与 SVM的核桃仁多特征融合分级方法 [J].农业与技术,2022,42(17):42-45.YAN X,WANG Y B,ZHANG Z S,et al.Multi-feature fusion grading method for walnut kernels based on image processing and SVM [J].Agriculture and Technology,2022,42(17):42-45.
[10] 徐杰,刘畅.基于改进 ELM和计算机视觉的核桃缺陷检测[J].食品与机械,2024,40(5):122-127.XU J,LIU C.Walnut defect detection based on improved ELM and computer vision [J].Food & Machinery,2024,40(5): 122-127.
[11] 谢丽娟,戴犇辉,洪友君,等.基于全卷积神经网络的核桃异物检测装备设计与试验 [J].农业机械学报,2022,53(5): 385-391.XIE L J,DAI B H,HONG Y J,et al.Design and test of detecting system for impurities in walnut based on full convolutional neural network algorithm [J].Transactions of the Chinese Society for Agricultural Machinery,2022,53(5):385-391.
[12] 刘达,朱兆优,叶海鹏,等.基于改进 YOLOv 5的酒瓶缺陷检测方法研究 [J].机电工程技术,2024,53(3):211-215.LIU D,ZHU Z Y,YE H P,et al.Research on defect detection method for wine bottles based on improved YOLOv 5[J]. Mechanical & Electrical Engineering Technology,2024,53(3):211-215.
[13] 陈卫东,刘超,王莹,等.基于机器视觉的食品瓶罐包装缺陷检测研究进展 [J].粮油食品科技,2024,32(4):185-191.CHEN W D,LIU C,WANG Y,et al.Research progress on inspecting food bottle and can packaging shortcomings based on machine vision [J].Science and Technology of Cereals,Oils and Foods,2024,32(4):185-191.
[14] 吴昊然,陈晓星,高傲.基于深度卷积神经网络的食品包装缺陷检测算法研究 [J].智能计算机与应用,2023,13(3):10-15.WU H R,CHEN X X,GAO A.Research on food packaging defect detection algorithm based on deep convolutional neural network [J].Intelligent Computer and Applications,2023,13(3):10-15.
[15] 丛军,李星.基于电子鼻、电子舌技术的荣昌猪肉及其制品贮藏过程新鲜度检测研究 [J].食品安全质量检测学报, 2024,15(7):192-201.CONG J,LI X.Detection of freshness of Rongchang pork and its products during storage based on electronic nose and electronic tongue technology [J].Journal of Food Safety & Quality,2024,15(7):192-201.
[16] 戈明辉,张俊,陆慧娟.基于机器视觉的食品外包装缺陷检测算法研究进展 [J].食品与机械,2023,39(9):95-102,116.GE M H,ZHANG J,LU H J.Research progress of food packaging defect detection based on machine vision [J].Food & Machinery,2023,39(9):95-102,116.
[17] ZHANG R M,JIA Z N,LI J X,et al.An improved EfficientDet remote sensing target detection algorithm based on multi-sensory field feature enhancement [J].Electronics Optics & Control,2024,31(7):53.
[18] 张雷,严昊,贾永镒,等.采用改进 YOLOv 3-Tiny模型的轻量化 莲 蓬 质 量 分 级 算 法 [J].农 业 工 程 学 报,2024,40(23): 248-257.ZHANG L,YAN H,JIA Y Y,et al.Lightweight classification of lotus seedpod quality using improved YOLOv 3-Tiny model[J].Transactions of the Chinese Society of Agricultural Engineering,2024,40(23):248-257.
[19] 刘雪,沈长盈,吕学泽,等.基于改进 MobileNetV 3-Large的鸡 蛋 新 鲜 度 识 别 模 型 [J].农 业 工 程 学 报,2022,38(17): 196-204.LIU X,SHEN C Y,LYU X Z,et al.Recognizing egg freshness using an improved MobileNetV 3-Large [J].Transactions of the Chinese Society of Agricultural Engineering,2022,38(17):196-204.
[20] 文韬,代兴勇,李浪,等.基于机器视觉与光谱融合的柑橘品质无损检测分级系统设计与试验 [J].江苏大学学报 (自然科学版 ),2024,45(1):38-45.WEN T,DAI X Y,LI L,et al.Design and experiment of non-destructive testing and grading system for citrus quality based on machine vision and spectral fusion [J].Journal of Jiangsu University (Natural Science Edition ),2024,45(1):38-45.
[21] 韩宇,齐康康,郑纪业,等.基于改进 YOLOv 11的轻量化肉牛面部识别方法 [J].智慧农业 (中英文 ),2025,7(3):173-184.HAN Y,QI K K,ZHENG J Y,et al.Lightweight cattle facial recognition method based on improved YOLOv 11[J].Smart Agriculture,2025,7(3):173-184.