•  
  •  
 

Corresponding Author(s)

施利春(1971—),男,河南职业技术学院副教授。E-mail:shilchun@sohu.com

Abstract

[Objective] To improve the detection accuracy and efficiency of non-destructive testing methods for tomatoes in food production. [Methods] Based on an automatic tomato sorting system, a comprehensive quality detection method for tomatoes was proposed, integrating machine vision, a multi-scale residual attention U-Net model, an improved whale optimization algorithm (IWOA), and a least squares support vector machine (LSSVM). Tomato image information was collected using machine vision. Tomato images were segmented using the multi-scale residual attention U-Net model to measure fruit diameter parameters. The parameters of the LSSVM model were optimized using an IWOA with chaotic mapping and an adaptive convergence factor to detect tomato firmness and lycopene content. Verification experiments were conducted. [Results] The proposed method achieved accurate, rapid, and non-destructive detection of comprehensive tomato quality. For fruit diameter, firmness, and lycopene content detection, the results showed a coefficient of determination (R2)>0.960 0, root mean square error (RMSE)<0.012 5, and average detection time <0.032 s. [Conclusion] Combining machine vision, deep learning, and intelligent algorithms can achieve accurate, rapid, and non-destructive detection of comprehensive tomato quality.

Publication Date

9-25-2025

First Page

109

Last Page

117

DOI

10.13652/j.spjx.1003.5788.2025.60056

References

[1] 张雨,饶元,陈文骏,等.不同成熟度番茄果实多模态图像数据集 [J].中国科学数据,2025,10(1):73-88.ZHANG Y,RAO Y,CHEN W J,et al.Adataset of multimodal images of tomato fruits at different stages of maturity [J].China Scientific Data,2025,10(1):73-88.
[2] 丛军,李星.基于电子鼻、电子舌技术的荣昌猪肉及其制品贮藏过程新鲜度检测研究 [J].食品安全质量检测学报,2024,15(7):192-201.CONG J,LI X.Detection of freshness of Rongchang pork and its products during storage based on electronic nose and electronic tongue technology [J].Journal of Food Safety & Quality,2024,15(7):192-201.
[3] 孙俊洋,符运来,吕晶,等.基于改进 YOLOv 7模型的海参苗计数方法研究 [J].计算机技术与发展, 2024,34(11):166-171.SUN J Y,FU Y L,LYU J,et al.Study on counting method of sea cucumber seedlings based on improved YOLOv 7 model [J].Computer Technology and Development,2024,34(11):166-171.
[4] ERNA K H,ROVINA K,MANTIHAL S.Current detection techniques for monitoring the freshness of meat-based products:a review [J].Journal of Packaging Technology and Research,2021,5(3):127-141.
[5] 伍萍辉,陈新,张馨,等.基于聚类—改进灰狼算法的设施番茄分割识别方法 [J].现代制造工程,2021 (6):83-89.WU P H,CHEN X,ZHANG X,et al.Segmentation and recognition of facility tomato based on clustering-improved GWO algorithm [J].Modern Manufacturing Engineering,2021(6):83-89.
[6] 孙宇朝,李守豪,夏秀波,等.利用改进 YOLOv 5s模型检测番茄果实成熟度及外观品质 [J].园艺学报,2024,51(2):396-410.SUN Y C,LI S H,XIA X B,et al.Detecting tomato fruit ripeness and appearance quality based on improved YOLOv 5s[J].Acta Horticulturae Sinica,2024,51(2):396-410.
[7] 顾文娟,魏金,阴艳超,等.基于改进 DeepLabv 3+的番茄图像多类别分割方法 [J].农业机械学报,2023,54(12):261-271.GU W J,WEI J,YIN Y C,et al.Multi-category segmentation method of tomato image based on improved DeepLabv 3+[J].Transactions of the Chinese Society for Agricultural Machinery,2023,54(12):261-271.
[8] 龙洁花,赵春江,林森,等.改进 Mask R-CNN 的温室环境下不同成熟度番茄果实分割方法 [J].农业工程学报,2021,37(18):100-108.LONG J H,ZHAO C J,LIN S,et al.Segmentation method of the tomato fruits with different maturities under greenhouse |environment based on improved Mask R-CNN [J].Transactions of the Chinese Society of Agricultural Engineering,2021,37(18):100-108.
[9] 吕金锐,付燕,倪美玉,等.基于改进 YOLOv 4模型的番茄成熟度检测方法 [J].食品与机械,2023,39(9):134-139.LU J R,FU Y,NI M Y,et al.Research on tomato maturity detection method based on improved YOLOv 4 model [J].Food & Machinery,2023,39(9):134-139.
[10] 王俊平,徐刚.机器视觉和电子鼻融合的番茄成熟度检测方法[J].食品与机械,2022,38(2):148-152.WANG J P,XU G.Research on tomato maturity detection method based on machine vision and electronic nose fusion [J].Food & Machinery,2022,38(2):148-152.
[11] 康明月,王成,孙鸿雁,等.基于改进的 WOA-LSSVM 樱桃番茄内部品质检测方法研究 [J].光谱学与光谱分析,2023,43(11):3 541-3 550.KANG M Y,WANG C,SUN H Y,et al.Research on internal quality detection method of cherry tomatoes based on improved WOA-LSSVM [J].Spectroscopy and Spectral Analysis,2023,43(11):3 541-3 550.
[12] KAUKAB S,KOMAL,GHODKI B M,et al.Improving real-time apple fruit detection:multi-modal data and depth fusion with non-targeted background removal [J].Ecological Informatics,2024,6(5):1-12.
[13] 胡鹏伟,刘江平,薛河儒,等.BP神经网络结合变量选择方法在牛奶蛋白质含量检测中的应用 [J].光电子·激光,2022,33(1):23-29.HU P W,LIU J P,XUE H R,et al.Application of BP neural network and variable selection method in protein content detection of milk [J].Journal of Optoelectronics·Laser,2022,33(1):23-29.
[14] 崔天宇,卢中领,薛琳,等.基于近红外反射光谱的番茄糖分快速检测模型研究 [J].光谱学与光谱分析,2023,43(4):1 218-1 224.CUI T Y,LU Z L,XUE L,et al.Research on the rapid detection model of tomato sugar based on near-infrared reflectance spectroscopy [J].Spectroscopy and Spectral Analysis,2023,43(4):1 218-1 224.
[15] 周雨帆,李胜旺,杨奎河,等.基于轻量级卷积神经网络的苹果 表 面 缺 陷 检 测 方 法 [J].河 北 工 业 科 技,2021,38(5):388-394.ZHOU Y F,LI S W,YANG K H,et al.Apple surface defect detection method based on lightweight convolutional neural network [J].Hebei Journal of Industrial Science and Technology,2021,38(5):388-394.
[16] 贾哲,陈晓婷,潘南,等.基于电子舌快速检测冷藏双斑东方鲀的新鲜度 [J].现代食品科技,2021,37(5):220-229.JIA Z,CHEN X T,PAN N,et al.The freshness of frozen Fugu bimaculatus detected by electronic tongue [J].Modern Food Science and Technology,2021,37(5):220-229.
[17] 沈海军,张汤磊,许振兴,等.基于 Fisher判别分析对苹果新鲜度的识别研究 [J].食品工业科技,2023,44(4):361-368.SHEN H J,ZHANG T L,XU Z X,et al.Recognition of apple freshness based on fisher discriminant analysis [J].Science and Technology of Food Industry,2023,44(4):361-368.
[18] 刘光宪,王丽,李雪,等.3种天然抗氧化剂对腊肉理化性质的影响 [J].食品安全质量检测学报,2021,12(15):6 177-6 184.LIU G X,WANG L,LI X,et al.Effects of 3 kinds of natural antioxidants on physicochemical properties of Chinese cured meat [J].Journal of Food Safety & Quality,2021,12(15):6 177-6 184.
[19] 李艳坤,董汝南,张进,等.光谱数据解析中的变量筛选方法[J].光谱学与光谱分析,2021,41(11):3 331-3 338.LI Y K,DONG R N,ZHANG J,et al.Variable selection methods in spectral data analysis [J].Spectroscopy and Spectral Analysis,2021,41(11):3 331-3 338.
[20] 文韬,代兴勇,李浪,等.基于机器视觉与光谱融合的柑橘品质无损检测分级系统设计与试验 [J].江苏大学学报 (自然科学版),2024,45(1):38-45.WEN T,DAI X Y,LI L,et al.Design and experiment of non-destructive testing and grading system for citrus quality based on machine vision and spectral fusion [J].Journal of Jiangsu University (Natural Science Edition ),2024,45(1):38-45.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.