•  
  •  
 

Corresponding Author(s)

张瑞琪(1992—),女,长春工业大学讲师,硕士。E-mail:zbfffs56@sina.com

Abstract

[Objective] To solve the problems such as poor grading accuracy and low efficiency existing in the current automatic grading methods for apples. [Methods] On the basis of the automatic grading system for apples based on machine vision, an automatic grading method combining convolutional neural network, global average pooling, batch normalization, and support vector machine is proposed for apples. Through global average pooling, the number of model parameters is reduced. The generalization ability of the model is improved by batch normalization. The Softmax classifier of the convolutional neural network is replaced by a support vector machine to improve the grading accuracy. Finally, verification tests are carried out. [Results] Compared with conventional grading methods for apples, the automatic grading method established in this study has increased accuracy and efficiency, with the grading accuracy of 98.50% and the grading speed of 209 FPS, which meets the requirements of food processing automation. [Conclusion] By optimizing the existing automatic grading methods for apples, the detection performance is improved to a certain extent.

Publication Date

10-28-2025

First Page

75

Last Page

81

DOI

10.13652/j.spjx.1003.5788.2025.60050

References

[1] 李英辉,王晓寰,赵翠俭.多特征融合方法在马铃薯图像快速检测中的应用 [J].机械设计与制造,2024 (8):54-58.LI Y H,WANG X H,ZHAO C J.Application of multi-feature fusion method in fast detection of potato images [J].Machinery Design & Manufacture,2024 (8):54-58.
[2] 康明月,王成,孙鸿雁,等.基于改进的 WOA-LSSVM 樱桃番茄内部品质检测方法研究 [J].光谱学与光谱分析,2023,43(11):3 541-3 550.KANG M Y,WANG C,SUN H Y,et al.Research on internal quality detection method of cherry tomatoes based on improved WOA-LSSVM [J].Spectroscopy and Spectral Analysis,2023,43(11):3 541-3 550.
[3] 张思雨,张秋菊,李可.采用机器视觉与自适应卷积神经网络检测花生仁品质 [J].农业工程学报,2020,36(4):269-277.ZHANG S Y,ZHANG Q J,LI K.Detection of peanut kernel quality based on machine vision and adaptive convolution neural network [J].Transactions of the Chinese Society of Agricultural Engineering,2020,36(4):269-277.
[4] 樊泽泽,柳倩,柴洁玮,等.基于颜色与果径特征的苹果树果实检测与分级 [J].计算机工程与科学,2020,42(9):1 599-1 607.FAN Z Z,LIU Q,CHAI J W,et al.Apple detection and grading based on color and fruit-diameter [J].Computer Engineering and Science,2020,42(9):1 599-1 607.
[5] 崔天宇,卢中领,薛琳,等.基于近红外反射光谱的番茄糖分快速检测模型研究 [J].光谱学与光谱分析,2023,43(4):1 218-1 224.CUI T Y,LU Z L,XUE L,et al.Research on the rapid detection model of tomato sugar based on near-infrared reflectance spectroscopy [J].Spectroscopy and Spectral Analysis,2023,43(4):1 218-1 224.
[6] 万薇,卜莹雪,王祥,等.基于改进 ResNet模型的食品新鲜度识别方法 [J].食品与机械,2023,39(9):123-127.WAN W,BU Y X,WANG X,et al.Food freshness recognition method based on improved ResNet model [J].Food & Machinery,2023,39(9):123-127.
[7] 赵利平,吴德刚.基于小波与模糊相融合的苹果分级算法 [J].食品与机械,2020,36(4):142-145.ZHAO L P,WU D G.Research on apple classification algorithm based on wavelet and fuzzy [J].Food & Machinery,2020,36(4):142-145.
[8] 王迎超,张婧婧,达新民,等.基于 K-means 与KNN的多特征苹果在线分级 [J].新疆农业科学,2023,60(3):643-650.WANG Y C,ZHANG J J,DA X M,et al.Design of multi-feature apple online grading system based on K-means and KNN[J].Xinjiang Agricultural Sciences,2023,60(3):643-650.
[9] 王阳阳,黄勋,陈浩,等.基于同态滤波和改进 K-means 的苹果分级算法研究 [J].食品与机械,2019,35(12):47-51,112.WANG Y Y,HUANG X,CHEN H,et al.Research on appleclassification algorithm based on homomorphic filtering and improved K-means algorithm [J].Food & Machinery,2019,35(12):47-51,112.
[10] 林海波,卢元栋,丁荣诚,等.基于图像处理与改进 SVM的苹果多特征融合分级方法 [J].山东农业科学,2022,54(6):141-149.LIN H B,LU Y D,DING R C,et al.A multi-feature fusion classification method for apple based on image processing and improved SVM [J].Shandong Agricultural Sciences,2022,54(6):141-149.
[11] 刘燕德,王舜.基于图像和光谱融合的脐橙货架期高光谱成像无损检测研究 [J].光谱学与光谱分析,2022,42(6):1 792-1 797.LIU Y D,WANG S.Research on non-destructive testing of navel orange shelf life imaging based on hyperspectral image and spectrum fusion [J].Spectroscopy and Spectral Analysis,2022,42(6):1 792-1 797.
[12] 文韬,代兴勇,李浪,等.基于机器视觉与光谱融合的柑橘品质无损检测分级系统设计与试验 [J].江苏大学学报 (自然科学版 ),2024,45(1):38-45.WEN T,DAI X Y,LI L,et al.Design and experiment of non-destructive testing and grading system for citrus quality based on machine vision and spectral fusion [J].Journal of Jiangsu University (Natural Science Edition ),2024,45(1):38-45.
[13] 沈海军,张汤磊,许振兴,等.基于 Fisher判别分析对苹果新鲜度的识别研究 [J].食品工业科技,2023,44(4):361-368.SHEN H J,ZHANG T L,XU Z X,et al.Recognition of apple freshness based on fisher discriminant analysis [J].Science and Technology of Food Industry,2023,44(4):361-368.
[14] 夏军勇,王康宇,周宏娣.基于改进 Faster R-CNN 的食品包装缺陷检测 [J].食品与机械,2023,39(11):131-136,151.XIA J Y,WANG K Y,ZHOU H D.Food packaging defect detection by improved network model of Faster R-CNN [J].Food & Machinery,2023,39(11):131-136,151.
[15] 孙宇朝,李守豪,夏秀波,等.利用改进 YOLOv 5s模型检测番茄 果 实 成 熟 度 及 外 观 品 质 [J].园 艺 学 报,2024,51(2):396-410.SUN Y C,LI S H,XIA X B,et al.Detecting tomato fruit ripeness and appearance quality based on improved YOLOv 5s[J].Acta Horticulturae Sinica,2024,51(2):396-410.
[16] 丛军,李星.基于电子鼻、电子舌技术的荣昌猪肉及其制品贮藏过程新鲜度检测研究 [J].食品安全质量检测学报,2024,15(7):192-201.CONG J,LI X.Detection of freshness of Rongchang pork and its products during storage based on electronic nose and electronic tongue technology [J].Journal of Food Safety & Quality,2024,15(7):192-201.
[17] 杨明丽,纠海峰,邓薇.基于气味检测的红富士苹果新鲜度识别方法研究 [J].国外电子测量技术,2024,43(10):91-101.YANG M L,JIU H F,DENG W.Research on the freshness recognition method of red Fuji apples based on odor detection[J].Foreign Electronic Measurement Technology,2024,43(10):91-101.
[18] 王冉冉,刘鑫,尹孟,等.面向苹果硬度检测仪的声振信号激励与采集系统设计 [J].浙江大学学报 (农业与生命科学版 ),2020,46(1):111-118.WANG R R,LIU X,YIN M,et al.Design of excitation and acquisition system of acoustic vibration signal for apple hardness tester [J].Journal of Zhejiang University (Agriculture & Life Sciences ),2020,46(1):111-118.
[19] YANG J Y,LIU S D,MENG Y,et al.Self-powered tactile sensor for gesture recognition using deep learning algorithms[J].ACS Applied Materials & Interfaces,2022,14(22):25 629-25 637.
[20] 徐杰,刘畅.基于改进 ELM 和计算机视觉的核桃缺陷检测[J].食品与机械,2024,40(5):122-127.XU J,LIU C.Walnut defect detection based on improved ELM and computer vision [J].Food & Machinery,2024,40(5):122-127.
[21] 王红君,刘紫宾,赵辉,等.基于改进 YOLOv 5的苹果轻量化检测算法 [J].农机化研究,2025,47(7):65-71.WANG H J,LIU Z B,ZHAO H,et al.Lightweight apple detection algorithm based on improved YOLOv 5[J].Journal of Agricultural Mechanization Research,2025,47(7):65-71.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.