•  
  •  
 

Abstract

Antimicrobial peptides are widely present in the organism, which are gene-encoded, ribosomal synthesized polypeptides. Antimicrobial peptides have anti bacteria, fungi, viruses and other biological functions. They are the important part of non-specific immune function of organism. With the development of the research on the antimicrobial peptides, they are expected to be excellent substitutes for antibiotics, fungicides. This review briefly introduces the classification, mechanism and application in the control of fruits and vegetables diseases of antimicrobial peptides, and prospects the problems existing in the research and widely application.

Publication Date

2-28-2017

First Page

199

Last Page

204

DOI

10.13652/j.issn.1003-5788.2017.02.042

References

[1] SCHIRRA M, D’AQUINO S, CABRAS P, et al. Control of postharvest diseases of fruit by heat and fungicides: efficacy, residue levels, and residue persistence. A review[J]. Journal ofAgricultural and Food Chemistry, 2011, 59(16): 8 531-8 542.
[2] 刘石宝, 倪孟祥, 罗学刚. 抗菌肽研究进展[J]. 药物生物技术, 2011(5): 466-470.
[3] 刘秀, 郭中坤, 王可洲. 抗菌肽来源、分类方式、生物学活性、作用机制及应用研究进展[J]. 中国医药生物技术, 2016, 11(6): 539-543.
[4] HULTMARK D, STEINER H, RASMUSON T, et al. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophoracecropia[J]. European Journal of Biochemistry, 1980, 106(1): 7-16.
[5] 卢晓风, 杨星勇, 程惊秋, 等. 昆虫抗菌肽及其研究进展[J]. 药学学报, 1999, 34(2): 156-160.
[6] JAESAM H, JUNEYOUNG L, YEONJU K, et al. Isolation and characterization of a defensin-like peptide (Coprisin) from the dung beetle, Copristripartitus.[J]. International Journal of Peptides, 2009, 2009(57): 89-99.
[7] CHOI Y S, CHOO Y M, LEE K S, et al. Cloning and expression profiling of four antibacterial peptide genes from the bumblebee Bombusignitus[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2008, 150(2): 141-146.
[8] 王义鹏, 赖仞. 昆虫抗菌肽结构、性质和基因调控[J]. 动物学研究, 2010, 31(1): 27-34.
[9] CHAPUISAT M, OPPLIGER A, MAGLIANO P, et al. Wood ants use resin to protect themselves against pathogens[J]. Proceedings of the Royal Society of London B: Biological Sciences, 2007, 274(1 621): 2 013-2 017.
[10] VILJAKAINEN L, PAMILO P. Selection on an antimicrobial peptide defensin in ants[J]. Journal ofMolecular Evolution, 2008, 67(6): 643-652.
[11] SCOCCHI M, TOSSI A, GENNARO R. Proline-rich antimicrobial peptides: converging to a non-lytic mechanism of action[J]. Cellular & Molecular Life Sciences, 2011, 68(13): 2 317-2 330.
[12] 任雪艳. 重组酵母GS115/PSD,GS115/CEC的构建及其对水果采后病害抑制效果的研究[D]. 杭州: 浙江大学, 2012.
[13] 朱伟, 王本祥, 朱迅. 蜂毒素的研究进展[J]. 吉林大学学报医学版, 2001, 27(2): 212-214.
[14] MUOZ A, LPEZ-GARCA B, MARCOS J F. Comparative study of antimicrobial peptides to control citrus postharvest decay caused by Penicilliumdigitatum[J]. Journal ofAgricultural and Food Chemistry, 2007, 55(20): 8 170-8 176.
[15] 赵华, 张艳艳, 汤加勇, 等. 重组鲢鱼抗菌肽parasin I原核表达、纯化与抗菌活性[J]. 动物营养学报, 2012, 24(9): 1 731-1 736.
[16] 马卫明. 猪小肠抗菌肽分离鉴定及其生物活性研究[D]. 北京: 中国农业大学, 2004: 41-59.
[17] PETRUZZELLI R, CLEMENTI M E, MARINI S, et al. Respiratory inhibition of isolated mammalian mitochondria by salivary antifungal peptide histatin-5[J]. Biochemical & Biophysical Research Communications, 2003, 311(4): 1 034-1 040.
[18] 严伟. 万古霉素的分离纯化工艺研究[D]. 杭州: 浙江大学, 2014: 7-45.
[19] 潘顺, 刘雷, 王为民. 哈茨木雷发酵液中peptaibols抗菌肽的鉴定及活性研究[J]. 中国生物防治学报, 2012, 28(4): 528-536.
[20] MUOZ A, LPEZ-GARCA B, PREZ-PAY E, et al. Antimicrobial properties of derivatives of the cationic tryptophan-rich hexapeptide PAF26[J]. Biochemical andBiophysical Research Communications, 2007, 354(1): 172-177.
[21] BOMAN H C, BOMAN I A, ANDREU D, et al. Chemical synthesis and enzymic processing of precursor forms of cecropins A and B[J]. Journal of Biological Chemistry, 1989, 264(10): 5 852-5 860.
[22] GUERREIRO C I P D, FONTES C M G A, GAMA M, et al. Escherichia coli expression and purification of four antimicrobial peptides fused to a family 3 carbohydrate-binding module (CBM) from Clostridium thermocellum[J]. ProteinExpression and Purification, 2008, 59(1): 161-168.
[23] NIU Ming-fu, LI Xiang, WEI Jian-chao, et al. The molecular design of a recombinant antimicrobial peptide CP and its in vitro activity[J]. Protein Expression and Purification, 2008, 57(1): 95-100.
[24] 吴希. 重组家蚕抗菌肽CM4抗真菌作用机理的研究[D]. 南京: 南京师范大学, 2006: 24-63.
[25] ZHANG Jie, ZHANG Shuang-quan, WU Xi, et al. Expression and characterization of antimicrobial peptide ABP-CM4 in methylotrophic yeast Pichia pastoris[J]. Process Biochemistry, 2006, 41(2): 251-256.
[26] REN Xue-yan, KONG Qing-jun, WANG Hui-li, et al. Biocontrol of fungal decay of citrus fruit by Pichia pastoris recombinant strains expressing cecropinA[J]. Food Chemistry, 2012, 131(3): 796-801.
[27] 尹娜, 李鸿钧, 彭梅, 等. 抗菌肽Cecropin D在毕赤酵母中的表达、纯化及活性鉴定[J]. 中国生物制品学杂志, 2008, 21(3): 185-189.
[28] HANCOCK R E W, ROZEK A. Role of membranes in the activities of antimicrobial cationic peptides[J]. FEMS Microbiology Letters, 2002, 206(2): 143-149.
[29] PANDEY B K, SRIVASTAVA S, SINGH M, et al. Inducing toxicity by introducing a leucine-zipper-like motif in frog antimicrobial peptide, magainin 2[J]. BiochemicalJournal, 2011, 436(3): 609-620.
[30] JENSSEN H, HAMILL P, HANCOCK R E W. Peptide antimicrobial agents[J]. ClinicalMicrobiology Reviews, 2006, 19(3): 491-511.
[31] BOND P J, PARTON D L, CLARK J F, et al. Coarse-grained simulations of the membrane-active antimicrobial peptide maculatin1.1[J]. Biophysical Journal, 2008, 95(8): 3 802-3 815.
[32] BOZELLI J C, SASAHARA E T, PINTO M R S, et al. Effect of head group and curvature on binding of the antimicrobial peptide tritrpticin to lipid membranes[J]. Chemistry andPhysics of Lipids, 2012, 165(4): 365-373.
[33] SHENKAREV Z O, BALANDIN S V, TRUNOV K I, et al. Molecular mechanism of action of β-hairpin antimicrobial peptide arenicin: oligomeric structure in dodecylphosphocholine micelles and pore formation in planar lipid bilayers[J]. Biochemistry, 2011, 50(28): 6 255-6 265.
[34] DUVIC B, JOUAN V, ESSA N, et al. Cecropins as a marker of Spodopterafrugiperda immunosuppression during entomopathogenic bacterial challenge[J]. Journal ofInsect Physiology, 2012, 58(6): 881-888.
[35] YONEYAMA F, IMURA Y, OHNO K, et al. Peptide-lipid huge toroidal pore, a new antimicrobial mechanism mediated by a lactococcalbacteriocin, lacticin Q[J]. Antimicrobial agents and chemotherapy, 2009, 53(8): 3 211-3 217.
[36] FERREIRA CESPEDES G, NICOLAS LORENZON E, FESTOZO VICENTE E, et al. Mechanism of action and relationship between structure and biological activity of Ctx-Ha: a new ceratotoxin-like peptide from Hypsiboasalbopuncta-tus[J]. Protein andPeptide Letters, 2012, 19(6): 596-603.
[37] HOU Li-xia, SHI Yong-hui, ZHAI Pei, et al. Inhibition of foodborne pathogens by Hf-1, a novel antibacterial peptide from the larvae of the housefly ( Musca domestica ) in medium and orange juice[J]. Food Control, 2007, 18(11): 1 350-1 357.
[38] JEAN-FRANOIS F, ELEZGARAY J, BERSON P, et al. Pore Formation Induced by an Antimicrobial Peptide: Electrostatic Effects[J]. Biophysical Journal, 2008, 95(12): 5 748-5 756.
[39] LOPES J L, GMARA M J, HARO I, et al. Contribution of the tyr-1 in plantaricin149a to disrupt phospholipid model membranes[J]. International Journal of Molecular Sciences, 2013, 14(6): 12 313-12 328.
[40] LAN Yun, YE Yan, KOZLOWSKA J, et al. Structural contributions to the intracellular targeting strategies of antimicrobial peptides[J]. BiochimicaetBiophysicaActa (BBA)-Biomem-branes, 2010, 1 798(10): 1 934-1 943.
[41] VINCENT P A, MORERO R D. The structure and biological aspects of peptide antibiotic microcinJ25[J]. Current Medicinal Chemistry, 2009, 16(5): 538-549.
[42] GUT I M, BLANKE S R, WA V D D. Mechanism of inhibition of Bacillus anthracis spore outgrowth by the lantibioticnisin[J]. Acs Chemical Biology, 2011, 6(7): 744-752.
[43] 邹修平, 彭爱红, 刘琦琦, 等. 分泌型Cecropin B抗菌肽基因转化血橙提高其抗溃疡病水平[J]. 园艺学报, 2014, 41(3): 417-428.
[44] HE Yong-rui, CHEN Shan-chun, PENG Ai-hong, et al. Production and evaluation of transgenic sweet orange (Citrus sinensis, Osbeck) containing bivalent antibacterial peptide genes ( Shiva A and Cecropin B) via a novel Agrobacterium -mediated transformation of mature axillary buds[J]. Scientia Horticulturae, 2011, 128(2): 99-107.
[45] OSUSKY M, ZHOU Guo-qing, OSUSKA L, et al. Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens[J]. Nature Biotechnology, 2000, 18(11): 1 162-1 166.
[46] OSUSKY M, OSUSKA L, KAY W, et al. Genetic modifica-tion of potato against microbial diseases: in vitro and in planta activity of a dermaseptin B1 derivative, MsrA2[J]. Theoretical and Applied Genetics, 2005, 111(4): 711-722.
[47] OSUSKY M, OSUSKA L, HANCOCK R E, et al. Transgenic potatoes expressing a novel cationic peptide are resistant to late blight and pink rot[J]. Transgenic Research, 2004, 13(2): 181-190.
[48] SCHAEFER S C, GASIC K, CAMMUE B, et al. Enhanced resistance to early blight in transgenic tomato lines expressing heterologous plant defense genes[J]. Planta, 2005, 222(5): 858-866.
[49] JONES R W, OSPINA-GIRALDO M, CLEMENTE T. Prosystemin-antimicrobial-peptide fusion reduces tomato late blight lesion expansion[J]. Molecular Breeding, 2004, 14(1): 83-89.
[50] CHAKRABARTI A, GANAPATHI T R, MUKHERJEE P K, et al. MSI-99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana[J]. Planta, 2003, 216(4): 587-596.
[51] SHARMA A, SHARMA R, IMAMURA M, et al. Transgenic expression of cecropin B, an antibacterial peptide from Bombyxmori,confers enhanced resistance to bacterial leaf blight in rice[J]. FEBS letters, 2000, 484(1): 7-11.
[52] RAHNAMAEIAN M, VILCINSKAS A. Defense gene expression is potentiated in transgenic barley expressing antifungal peptide metchnikowin throughout powdery mildew challenge[J]. Journal of Plant Research, 2012, 125(1): 115-124.
[53] SCHIRRA M, D’AQUINO S, CABRAS P, et al. Control of postharvest diseases of fruit by heat andfungicides: efficacy, residue levels, and residue persistence: A review[J]. Journal of Agricultural and Food Chemistry, 2011, 59(16): 8 531-8 542.
[54] LIU Zun-ying, ZENG Ming-yong, DONG Shi-yuan, et al. Effect of an antifungal peptide from oyster enzymatic hydrolysates for control of gray mold(Botrytiscinerea ) on harvested strawberries[J]. Postharvest Biology & Technology, 2007, 46(1): 95-98.
[55] MUOZ A, LPEZGARCA B, MARCOS J F. Comparative Study of Antimicrobial Peptides To Control Citrus Postharvest Decay Caused byPenicilliumdigitatum[J]. Journal of Agricultural & Food Chemistry, 2007, 55(20): 8 170-8 176.
[56] LPEZ-GARCI B, VEYRAT A, PREZ-PAY E, et al. Comparison of the activity of antifungal hexapeptides and the fungicides thiabendazole and imazalil against postharvest fungal pathogens[J]. International Journal of Food Microbiology, 2003, 89(2): 163-170.
[57] BADOSA E, FERR R, FRANCS J, et al. Sporicidal activity of synthetic antifungal undecapeptides and control of Penicillium rot of apples[J]. Applied & Environmental Microbiology, 2009, 75(17): 5 563-5 569.
[58] JONES R W, PRUSKY D. Expression of an antifungal peptide in Saccharomyces: a new approach for biological control of the postharvest disease caused by Colletotrichumcoccodes[J]. Phytopathology, 2002, 92(1): 33-37.
[59] WISNIEWSKI M, BASSETT C, ARTLIP T, et al. Overexpression of a peach defensin gene can enhance the activity of postharvest biocontrol agents[J]. Acta Horticulturae, 2005, 682: 1 999-2 006.
[60] 康苏, 夏丽洁, 马纪, 等. 新疆家蚕抗菌肽对鲜榨果汁防腐效果的影响[J]. 食品科技, 2014(6): 247-251.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.