•  
  •  
 

Abstract

Drying the yeast cells into a dormant state, that is, preparing solid active dry yeast, and the active dry yeast is convenient for transport and storage, and widely used in the fields of wine making, baking, biological control and so on. During the process of preparing active dry yeast, drying the yeast is an important step. It was introduced that the thermal drying methods, including drying methods of using vacuum, spray, and fluidized bed, which are economical, high in feasibility, low energy consumption, and can be preserve for a long time. Moreover, the factors affect the activity of dry yeast during the whole drying process were also analyzed, including the tolerance of the yeast to the external environment, the culture conditions of the yeast, the addition of the protective agent, the drying process, the storage and rehydration conditions, etc. finally, the methods to improve the activity of the yeast were discussed.

Publication Date

2-28-2017

First Page

205

Last Page

210

DOI

10.13652/j.issn.1003-5788.2017.02.043

References

[1] 于景芝, 陈尧燊, 俞学锋. 酵母生产与应用手册[M]. 北京: 中国轻工业出版社, 2005.
[2] POZO-BAYO′N M A, ANDUJAR-ORTIZ I, ALCAIDE-HIDALGO J M, et al. Characterization of commercial inactive dry yeast preparations for enological use based on their ability to release soluble compounds and their behavior toward aroma compounds in model wines[J]. Journal of Agricultural and Food Chemistry, 2009, 57(22): 10 784-10 792.
[3] QUEROL A, BARRIO E, HUERTAT, et al. Molecular monitoring of wine fermentations conducted by active dry yeast strains[J]. Applied and Environmental Microbiology, 1992, 58(9): 2 948-2 953.
[4] RODRGUEZ-PORRATA B, NOVO M, GUILLAMN J, et al. Vitality enhancement of the rehydrated active dry wine yeast[J]. International Journal of Food Microbiology, 2008, 126(1): 116-122.
[5] BLANQUET S, GARRAIT G, BEYSSAC E, et al. Effects of cryoprotectants on the viability and activity of freeze dried recombinant yeasts as novel oral drug delivery systems assessed by an artificial digestive system[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2005, 61(1): 32-39.
[6] ATTFIELD P V. Stress tolerance: the key to effective strains of industrial baker's yeast[J]. Nature Biotechnology, 1997, 15(13): 1 351-1 357.
[7] DEL BARRIO-GALN R, PREZ-MAGARIO S, ORTEGA-HERAS M, et al. Polysaccharide characterization of commercial dry yeast preparations and their effect on white and red wine composition[J]. LWT-Food Science and Technology, 2012, 48(2): 215-223.
[8] MARTINS F F, FERREIRA T F, AZEVEDO D A, et al. Evaluation of crude oil degradation byYarrowia lipolytica[J]. Chem Eng Trans, 2012, 27: 223-228.
[9] SHAKIR M, NASIR Z, KHANM S, et al. Study on immobilization of yeast alcohol dehydrogenase on nanocrystalline Ni-Co ferrites as magnetic support[J]. International Journal of Biological Macromolecules, 2015, 72: 1 196-1 204.
[10] DROBY S, WISNIEWSKI M, MACARISIND, et al. Twenty years of postharvest biocontrol research: Is it time for a new paradigm?[J]. Postharvest Biology and Technology, 2009, 52(2): 137-145.
[11] LIMA L S, ALCALDE C R, FREITAS H S, et al. Performance of dairy goats fed diets with dry yeast from sugar cane as protein source[J]. Revista Brasileira de Zootecnia, 2012, 41(1): 232-236.
[12] MUTER O, LUBINYA I, MILLERS D, et al. Cr (VI) sorption by intact and dehydrated Candida utilis cells in the presence of other metals[J]. Process Biochemistry, 2002, 38(1): 123-131.
[13] RAPOPORT A, TURCHETTI B, BUZZINI P. Application of anhydrobiosis and dehydration of yeasts for non-conventional biotechnological goals[J]. World Journal of Microbiology and Biotechnology, 2016, 32(6): 1-10.
[14] NAN Fu, CHEN Xiao-Dong. Towards a maximal cell survival in convective thermal drying processes [J]. Food Research International, 2011, 44(5): 1 127-1 149.
[15] RATTI C. Hot air and freeze-drying of high-value foods: a review[J]. Journal of food engineering, 2001, 49(4): 311-319.
[16] CAL K, SOLLOHUB K. Spray drying technique. I: Hardware and process parameters[J]. Journal of Pharmaceutical Sciences, 2010, 99(2): 575-586.
[17] 李辉, 袁芳, 林河通, 等. 食品微波真空干燥技术研究进展[J]. 包装与食品机械, 2011, 29(1): 46-50.
[18] HU Qing-guo, ZHANG Min, MUJUMDAR A S, et al. Drying of edamames by hot air and vacuum microwave combination[J]. Journal of Food Engineering, 2006, 77(4): 977-982.
[19] TANG Da-wei.Techniques and application of microwave vacuum drying[J]. Pharmaceutical and Engineering Design, 2002, 23(6): 3-6.
[20] 秦丹. 生防制剂在葡萄保鲜中的应用与抑菌机理研究[J]. 长沙: 湖南农业大学, 2007: 37-58.
[21] 南博. 活性酿酒酵母的真空干燥技术研究[D]. 杨凌: 西北农林科技大学, 2014.
[22] MELIN P, HKANSSON S, SCHNRER J. Optimisation and comparison of liquid and dry formulations of the biocontrol yeast Pichia anomala J121[J]. Applied Microbiology and Biotechnology, 2007, 73(5): 1 008-1 016.
[23] CERRUTTI P, DE HUERGO M S, GALVAGNO M, et al. Commercial baker's yeast stability as affected by intracellular content of trehalose, dehydration procedure and the physical properties of external matrices[J]. Applied Microbiology and Biotechnology, 2000, 54(4): 575-580.
[24] ABADIAS M, TEIXID N, USALLJ, et al. Survival of the postharvest biocontrol yeast Candida sake CPA-1 after dehydration by spray-drying[J]. Biocontrol Science and Technology, 2005, 15(8): 835-846.
[25] 唐飞. 海洋生防酵母 Rhodosporidium paludigenum 干燥工艺研究[D]. 浙江: 浙江大学, 2012: 14-23.
[26] APONTE M, TROIANIELLO G D, DI CAPUA M, et al. Impact of different spray-drying conditions on the viability of wine Saccharomyces cerevisiae strains[J]. World Journal of Microbiology and Biotechnology, 2016, 32(1): 1-9.
[27] CHANDRALEKHA A, TAVANANDI A H, AMRUTHA N, et al. Encapsulation of yeast (Saccharomyces cereviciae) by spray drying for extension of shelf life[J]. Drying Technology, 2016, 34(11): 1 307-1 318.
[28] MOKIOU S, MAGAN N. Physiological manipulation and formulation of the biocontrol yeast Pichia anomala for control of Penicillium verrucosum and ochratoxin A contamination of moist grain[J]. Biocontrol Science and Technology, 2008, 18(10): 1 063-1 073.
[29] BAYROCK D, INGLEDEW W M. Fluidized bed drying of baker's yeast: moisture levels, drying rates, and viability changes during drying[J]. Food Research International, 1997, 30(6): 407-415.
[30] MILLE Y, GIRARD J P, BENEY L, et al. Air drying optimization of Saccharomyces cerevisiae through its water-glycerol dehydration properties[J]. Journal of Applied Microbiology, 2005, 99(2): 376-382.
[31] 庞水秀, 张红印, 杨其亚, 等. 卡利比克毕赤酵母活细胞制剂加工工艺的研究[J]. 食品工业科技, 2012(2): 303-306.
[32] GECIOVA J, BURY D, JELEN P. Methods for disruption of microbial cells for potential use in the dairy industry: a review[J]. International Dairy Journal, 2002, 12(6): 541-553.
[33] DONS F, FERRARI G, LENZA E, et al. Main factors regulating microbial inactivation by high-pressure homogenization: Operating parameters and scale of operation[J]. Chemical Engineering Science, 2009, 64(3): 520-532.
[34] COX C S. Roles of water molecules in bacteria and viruses[J]. Origins of Life and Evolution of the Biosphere, 1993, 23(1): 29-36.
[35] SANTIVARANGKNA C, KULOZIK U, FOERST P. Inactivation mechanisms of lactic acid starter cultures preserved by drying processes[J]. Journal of Applied Microbiology, 2008, 105(1): 1-13.
[36] LAROCHE C, FINE F, GERVAIS P. Water activity affects heat resistance of microorganisms in food powders[J]. International Journal of Food Microbiology, 2005, 97(3): 307-315.
[37] LIU Jia, WISNIEWSKI M, DROBY S, et al. Effect of heat shock treatment on stress tolerance and biocontrol efficacy of Metschnikowia fructicola[J]. FEMS Microbiology Ecology, 2011, 76(1): 145-155.
[38] ABEE T, WOUTERS J A. Microbial stress response in minimal processing[J]. International Journal of Food Microbiology, 1999, 50(1): 65-91.
[39] CHENG Zhe, CHI Meng-shan, LI Guang-kun, et al. Heat shock improves stress tolerance and biocontrol performance of Rhodotorula mucilaginosa[J]. Biological Control, 2016, 95: 49-56.
[40] PIPER P W. Molecular events associated with acquisition of heat tolerance by the yeast Saccharomyces cerevisiae[J]. FEMS Microbiology Reviews, 1993, 11(4): 339-355.
[41] AN Bang, LI Bo-qiang, QIN Guo-zheng, et al. Exogenous calcium improves viability of biocontrol yeasts under heat stress by reducing ROS accumulation and oxidative damage of cellular protein[J]. Current Microbiology, 2012, 65(2): 122-127.
[42] LI Chao-lan, ZHANG Hong-yin, YANG Qi-ya, et al. Ascorbic acid enhances oxidative stress tolerance and biological control efficacy of Pichia caribbica against postharvest blue mold decay of apples[J]. Journal of Agricultural and Food Chemistry, 2014, 62(30): 7 612-7 621.
[43] LIU Jia, WISNIEWSKI M, DROBY S, et al. Increase in antioxidant gene transcripts, stress tolerance and biocontrol efficacy of Candida oleophila following sublethal oxidative stress exposure[J]. FEMS Microbiology Ecology, 2012, 80(3): 578-590.
[44] LIU Jia, WISNIEWSKI M, DROBY S, et al. Glycine betaine improves oxidative stress tolerance and biocontrol efficacy of the antagonistic yeast Cystofilobasidium infirmominiatum[J]. International Journal of Food Microbiology, 2011, 146(1): 76-83.
[45] GERVAIS P, MARECHAL P A, MOLIN P. Effects of the kinetics of osmotic pressure variation on yeast viability[J]. Biotechnology and Bioengineering, 1992, 40(11): 1 435-1 439.
[46] TEIXID N, VINAS I, USALL J, et al. Ecophysiological responses of the biocontrol yeast Candida sake to water, temperature and pH stress[J]. Journal of Applied Microbiology, 1998, 84(2): 192-200.
[47] MORGAN C A, HERMAN N, WHITEP A, et al. Preservation of micro-organisms by drying; a review[J]. Journal of microbiological methods, 2006, 66(2): 183-193.
[48] TEIXID N, VIAS I, USALL J, et al. Improving ecological fitness and environmental stress tolerance of the biocontrol yeast Candida sake by manipulation of intracellular sugar alcohol and sugar content[J]. Mycological Research, 1998, 102(11): 1 409-1 417.
[49] 王学锋, 苑伟, 刘延琳. 培养基的主要成分对优选酿酒酵母生物量的影响[J]. 中国酿造, 2010, 29(8): 18-21.
[50] HUBALEK Z. Protectants used in the cryopreservation of microorganisms[J]. Cryobiology, 2003, 46(3): 205-229.
[51] OBUCHI K, IWAHASHI H, LEPOCKJ R, et al. Calorimetric characterization of critical targets for killing and acquired thermotolerance in yeast[J]. Yeast, 2000, 16(2): 111-119.
[52] 李博强. 海藻糖提高酵母拮抗菌生活力和生防效力的作用机制[D]. 北京: 科学院植物研究所,中国, 2005: 6-12.
[53] ELEUTHERIO E C A, ARAUJO P S, PANEKA D. Protective role of trehalose during heat stress in Saccharomyces cerevisiae[J]. Cryobiology, 1993, 30(6): 591-596.
[54] CROWE J H, CARPENTER J F, CROWE L M. The role of vitrification in anhydrobiosis[J]. Annual Review of Physiology, 1998, 60(1): 73-103.
[55] LESLIE S B, ISRAELI E, LIGHTHART B, et al. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying[J]. Applied and Environmental Microbiology, 1995, 61(10): 3 592-3 597.
[56] BAYROCK D, INGLEDEWW M. Mechanism of viability loss during fluidized bed drying of baker's yeast[J]. Food Research International, 1997, 30(6): 417-425.
[57] MARECHAL P A, GERVAIS P. Yeast viability related to water potential variation: influence of the transient phase[J]. Applied Microbiology and Biotechnology, 1994, 42(4): 617-622.
[58] BEKER M J, RAPOPORT A I. Conservation of yeasts by dehydration[M]// MARTIN J Beker. Biotechnology Methods. Heidelberg: Springer Berlin Heidelberg, 1987: 127-171.
[59] BOYAVAL P, SCHUCK P. Le séchage des microorganismes par atomisation[J]. Industries Alimentaires et Agricoles, 1994, 111(11/12): 807-818.
[60] POIRIER I, MARCHAL P A, RICHARDS, et al. Saccharomyces cerevisiae viability is strongly dependant on rehydration kinetics and the temperature of dried cells[J]. Journal of Applied Microbiology, 1999, 86(1): 87-92.
[61] VAN STEVENINCK J, LEDEBOER A M. Phase transitions in the yeast cell membrane the influence of temperature on the reconstitution of active dry yeast[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1974, 352(1): 64-70.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.