•  
  •  
 

Abstract

In order to reduce the mechanical damage of sunflower seed during its harvest and storage, and provide the theoretical foundation for the design of related mechanical devices, was studied the mechanical properties of sunflower seed. According to the geometrical dimensions and the mechanical parameters, which obtained from the experiment, we established the physical model and the finite element calculation model of sunflower seed. By the method of finite element analysis, not only analyzed the failure modes of sunflower seed under different compression loads and compress methods, but also the regularity of distribution of its stress and strain. By comparing the results of experiment and finite element simulation, we confirmed the feasibility of the model. The results showed that the anti-extrusion capacity of sunflower seed is anisotropic,along the directions of X, Y and Z, its elastic modulus are EX=64.01 MPa, EY=23.63 MPa, EZ=101.8 MPa, respectively. Under the same pressure, sunflower seed is most likely to rupture in horizontal direction and least likely to rupture in the perpendicular direction. Different loading directions lead to different failure modes, the perpendicular loading tends to cause local cracks and rupture, while the horizontal and transversal loading lead to the seed cracks along the crevice of the cotyledons. Besides, instability failure might happen under the transversal loading.

Publication Date

2-28-2017

First Page

31

Last Page

35

DOI

10.13652/j.issn.1003-5788.2017.02.007

References

[1] 张亚新, 郑晓, 林国祥. 葵花籽压榨过程中的塑性模型[J]. 农业机械学报, 2009, 40(7): 138-142.
[2] KHODABAKHSHIAN R, EMADI B, ABBASPOUR FARD M H, et al. Mechanical Properties of Sunflower Seed and Its Kernel, Azargol Varietyas a Case Study,under Compressive Loading[J]. Journal of Agricultural Science and Technology, 2010, 4(2): 34-40.
[3] HERNNDEZ L F, BELLS P M. A3-D finite element analysisof the sunflower (Helianthus annuus L.) fruit.Biomechanical approach for theimprovement of its hullability[J]. Journal of Food Engineering,2007,78(3): 861-869.
[4] 卿艳梅, 李常友, 黄汉东, 等. 龙眼力学特性的有限元分析[J]. 农业机械学报, 2011, 42(6): 143-147.
[5] 李心平, 高连兴, 马福丽. 玉米种子力学特性的有限元分析[J]. 农业机械学报, 2007, 38(10): 64-67.
[6] 王荣, 焦群英, 魏德强, 等. 葡萄的力学特性及有限元模拟[J]. 农业工程学报, 2005, 21(2): 7-10.
[7] 郑甲红, 吴东泽, 梁金生, 等. 基于Workbench的青核桃力学特性分析[J]. 食品与机械, 2015, 31(5): 86-131.
[8] CARDENAS-WEBER M,STROSHINE RL, HAGHIGHI K, et al. Melon material properties and finite element analysis of melon compression with application to robot gripping[J]. Transactions of the ASAE, 1991, 34(3): 920-929.
[9] 张克平, 黄建龙, 杨敏, 等. 冬小麦籽粒受挤压特性的有限元分析及试验验证[J]. 农业工程学报, 2010, 26(6): 352-356.
[10] 周祖锷. 农业物料学[M]. 北京: 农业出版社, 1994.
[11] 代治国. 豌豆籽粒的力学性能试验分析[D]. 兰州: 甘肃农业大学, 2013: 7-40.
[12] 丁林峰, 李耀明, 徐立章. 稻谷压缩试验的接触力学分析[J]. 农机化研究, 2007(12): 112-115.
[13] 商跃进. 有限元原理与ANSYS应用指南[M]. 北京: 清华大学出版社, 2005.
[14] 唐玄之, 吴涌涛. 自制种子密度计的试验及应用[J]. 浙江大学学报: 农业与生命科学版, 1995(4): 431-432.
[15] 高耀东, 刘学杰. ANSYS机械工程应用精华50例[M]. 北京: 电子工业出版社, 2011: 8-33.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.