•  
  •  
 

Abstract

In this review, the research progress of compressor, evaporator and air cooler in trans-critical CO2 refrigeration system was analyzed. It was concluded that the method of improving the refrigeration efficiency and the optimum heat transfer efficiency of the trans-critical CO2 refrigeration system was obtained. The application of trans-critical CO2 refrigeration cycle in CO2 automotive air conditioning, heat pump and food processing were also discussed. The problems of high system pressure in CO2 refrigeration cycle in heat pump were analyzed. Finally, it was proposed that the development of oil-free compressor in trans-critical CO2 refrigeration cycle was one of the main research directions in the future. The application of CO2 refrigeration system in steaming and freezing of aquatic products, slaughtering of meat and refrigerating transportation of ice cream was prospected.

Publication Date

8-28-2019

First Page

226

Last Page

231

DOI

10.13652/j.issn.1003-5788.2019.08.042

References

[1] 冯凯, 蔡觉先. CO2制冷技术的研究发展[J]. 节能, 2017, 36(12): 8-14, 2.
[2] 吕静. 二氧化碳跨临界循环及换热特性的研究[D]. 天津: 天津大学, 2005: 2-8 .
[3] 李先碧, 冯雅康. 二氧化碳跨临界循环制冷的开发与研究进展[J]. 制冷与空调: 四川, 2008, 22(2): 99-103.
[4] 季阿敏. 二氧化碳制冷循环研究综述[C]//山东制冷空调—2009年山东省制冷空调学术年会“烟台冰轮杯”优秀论文集. 济南: 山东省制冷学会, 2009: 2.
[5] 马飙, 冀兆良. 二氧化碳制冷剂的应用研究现状及发展前景[J]. 制冷, 2012, 31(3): 36-43.
[6] 李先碧, 冯雅康. 二氧化碳跨临界循环制冷的研究进展[J]. 真空与低温, 2007, 26 (3): 173-177.
[7] 侯秀娟. CO2跨临界循环压缩机的性能研究[D]. 唐山: 河北联合大学, 2012: 6-12.
[8] MA Yuan, HE Zhi-long, PENG Xue-yuan, et al. Experimental investigation of the discharge valve dynamics in a reciprocating compressor for trans-critical CO2 refrigeration cycle[J]. Applied Thermal Engineering, 2012, 32(1): 13-21.
[9] LING Xiao-yang, WEI Xin-li, XIANG Qin, et al. Experimental study on the effect of compressor frequency on the performance of trans-critical CO2 heat pump system with regenerator[J]. Applied Thermal Engineering, 2019, 150(2): 1 216-1 223.
[10] 薛卫东, 任芳. 微型二氧化碳压缩机的开发[J]. 制冷技术, 2014, 34(2): 55-59.
[11] BARTOSZK, PETTER N. Oil free turbo-compressors for CO2 refrigeration applications[J]. International Journal of Refrigeration, 2013, 36(5): 1 576-1 583.
[12] 孙玉, 任晨曦, 张恒, 等. 二氧化碳制冷压缩机的研究进展[J]. 制冷技术, 2014, 34(5): 67-71.
[13] 刘忠彦. 二氧化碳跨临界循环热泵系统不同蒸发器的性能分析与试验研究[D]. 天津: 天津大学, 2014: 25-32.
[14] 石冬冬. 二氧化碳微通道蒸发器换热特性研究[D]. 上海: 上海理工大学, 2015: 13-18
[15] FADIL A, RIAD B, ALI S. CO2 evaporators design for vehicle HVAC operation[J]. Applied Thermal Engineering, 2012, 36(6): 330-344.
[16] HARUHIKO Y, HIROSHI Y, KAZUYUKI H, et al. Experimental observation of CO2 dry-ice behavior in an evaporator/sublimator[J]. Energy Procedia, 2017, 143(12): 375-380.
[17] 毛航. 二氧化碳微通道气冷器优化设计及分子动力学模拟[D]. 郑州: 郑州大学, 2015: 20-25.
[18] 叶菁菁, 胡海涛, 丁国良, 等. 带气冷器的二氧化碳地源热泵系统的性能分析[J]. 制冷技术, 2015, 35(5): 14-19, 24.
[19] 谌盈盈, 廖胜明, 黄珍珍. 跨临界二氧化碳热泵热水系统气冷器的仿真分析[J]. 制冷与空调: 四川, 2007, 21(4): 26-31.
[20] 马瑞芳, 李雯, 李世平, 等. CO2热泵双级冷却套管式气体冷却器性能数值模拟[J]. 制冷与空调: 四川, 2016, 30(5): 520-524, 548.
[21] GE Y T, TASSOU S A, DEWASANTOSA I, et al. Design optimisation of CO2 gas cooler/condenser in a refrigeration system[J]. Applied Energy, 2015, 160(6): 973-981.
[22] ANTONIO R, SERGIO M, SILVIA M. Multi-physics simulation of CO2 gas coolers using equivalence modeling[J]. International Journal of Refrigeration, 2018, 90(5): 99-107.
[23] 汪波, 茅靳丰, 耿世彬, 等. 国内换热器的研究现状与展望[J]. 制冷与空调, 2010, 24(5): 61-65.
[24] RAVISHANKAR C N. Recent advances in processing and packaging of fishery products: A review[J]. Aquatic Procedia, 2016, 7(8): 201-213.
[25] 张丽. 海外[J]. 家用电器,2018, 34(7): 13.
[26] 曹锋, 叶祖樑. 商超跨临界CO2增压制冷系统及技术应用现状[J]. 制冷与空调, 2017, 17(9): 68-75.
[27] 徐建楚. 跨临界二氧化碳系统循环在食品行业中的应用与火用分析[J]. 制冷与空调: 四川, 2009, 23(6): 92-97.
[28] JAKUB B, ARMIN H, KRZYSZTO B, et al. Design and simulations of refrigerated sea water chillers with CO2 ejector pumps for marine applications in hot climates[J]. Energy, 2018, 161(7): 90-103.
[29] 门汝岩, 孟长再. 冷凝热回收的研究[J]. 价值工程, 2012, 31(5): 43-44.
[30] 王振超. 商用二氧化碳制冷系统的设计[D]. 上海: 上海交通大学, 2009: 10-14.
[31] 金纪峰. 采用微通道换热器的二氧化碳汽车空调系统研究[D]. 上海: 上海交通大学, 2011: 11-16.
[32] 简林桦, 梁子伟, 邢琳, 等. CO2汽车空调气体冷却器的仿真分析[J]. 能源工程, 2016, 35(5): 21-28.
[33] 叶禾. 汽车空调制冷工质改善的研究浅析[J]. 科协论坛: 下半月, 2012, 26(11): 76-77.
[34] YU Bin-bin, WANG Dan-dong, LIU Ci-chong, et al. Performance improvements evaluation of an automobile air conditioning system using CO2-propane mixture as a refrigerant[J]. International Journal of Refrigeration, 2018, 88(4): 172-181.
[35] 石明星, 吕静, 李果. 二氧化碳汽车空调压缩机的热力性能模拟[D]. 上海: 上海理工大学, 2018: 31-34.
[36] 陈毅敏, 高为, 胡钰, 等. 二氧化碳热泵技术进展[J]. 化学工业, 2016, 34(2): 38-41.
[37] 杨德宇, 俞建荣, 蒋小明, 等. 二氧化碳热泵热水器技术与性能的对比分析[J]. 北京石油化工学院学报, 2013, 21(2): 50-55.
[38] 易长乐. 二氧化碳热泵系统中气体冷却器的数值模拟与实验研究[D]. 石家庄: 河北科技大学, 2018: 22-26.
[39] 车媛媛. 空气源跨临界CO2热泵热水器系统的性能研究[D]. 大连: 大连理工大学, 2013: 13-20.
[40] 陆军亮, 钱永康, 韩笑, 等. 二氧化碳热泵热水器系统运行特性[J]. 节能, 2016, 35(1): 31-34, 3.
[41] 邹春妹, 岑继文, 刘培, 等. 跨临界二氧化碳热泵喷射循环实验[J]. 化工学报, 2016, 67(4): 1 520-1 526.
[42] 刘东岳. 小型空气源二氧化碳热泵热水系统的开发与研究[D]. 唐山: 河北科技大学, 2016: 52-54.
[43] LIU Fang, ZHU Wei-quan, CAI Yang. Experimental study of a dual-mode CO2 heat pump system with thermal storage[J]. Energy Procedia, 2017, 105(1): 4 078-4 083.
[44] SONG Yu-long, LI Dong-zhe, CAO Feng, et al. Investigation of the optimal intermediate water temperature in a combined R134a and trans-critical CO2 heat pump for space heating[J]. International Journal of Refrigeration, 2017, 79(7): 10-24.
[45] 李椿, 王志华, 高秀芝, 等. CO2热泵研究现状及展望[J]. 制冷学报, 2018, 39(5): 1-9.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.