•  
  •  
 

Corresponding Author(s)

徐仰丽(1981—),女,温州市农业科学研究院高级实验师,硕士。E-mail:xuyangli@163.com

Abstract

Objective: This study aims to investigate the effect of different drying methods on the drying characteristics and volatile flavor of Stropharia rugosoannulata as raw material. Methods: The fresh S.rugosoannulata was dried by freeze-drying, heat pump drying, hot air drying, and microwave drying, and then the physical and chemical indexes were investigated. Results: The contents of crude protein, crude fat, ash, potassium, calcium, total flavonoids, essential amino acids, flavor amino acids and total amino acids are the highest in freeze drying. The six teenamino acids achieved 16.88 g/100 g in the freeze-drying. The rehydration rate and color all play the best performance in freeze drying. The scavenging rate of DPPH radical of S. rugosoannulata polysaccharide reached 61.14% in hot air drying; The rate was hot air drying>heat pump drying>microwave drying>freeze drying. Similarly, the scavenging rate of ABTS radical reached 67.97% in heat pump drying; The rates were heat pump drying>hot air drying>microwave drying>freeze drying. The monosaccharide of S. rugosoannulata is mainly composed of glucose Glc and Galactose gal, among which the content of freeze-dried glucose Glc is the most, accounting for 36.79% of the total sugar; The maximum molecular weight of S.rugosoannulata was freeze-drying; The volatile flavor of S.rugosoannulata different under different drying methods, and the volatile flavor of S. rugosoannulata after drying is quite different from that of fresh S. rugosoannulata. The volatile components in freeze-dried S. rugosoannulata are the most abundant, and some components are high. Conclusion: Freeze-drying has advantages over other drying methods in terms of nutritional composition, rehydration rate, color, and flavor. It has the least impact on the quality of S. rugosoannulata and is the most suitable drying method.

Publication Date

3-27-2024

First Page

168

Last Page

176

DOI

10.13652/j.spjx.1003.5788.2023.80972

References

[1] 陈荣荣, 李文, 吴迪, 等. 大球盖菇生长发育过程中营养、质构和滋味特征的动态变化[J]. 食用菌学报, 2022, 29(4): 42-54. CHEN R R, LI W, WU D, et al. Nutrients, texture and taste characteristics of Stropharia rugosoannulata during growth and development[J]. Acta Edulis Fungi, 2022, 29(4): 42-54.
[2] AMARESAN N, KUMAR M S, ANNAPURNA K, et al. Beneficial microbes in agro-ecology[M]. New York: Academic Press, 2020: 695-706.
[3] 黄美仙, 岑燕霞, 孙朋, 等. 大球盖菇研究进展[J]. 黑龙江农业科学, 2021(12): 124-129. HUANG M X, CEN Y X, SUN P, et al. Research progress on Stropharia rugosoannulata[J]. Heilongjiang Agricultural Sciences, 2021(12): 124-129.
[4] 常堃, 向世标, 李慧, 等. 大球盖菇干制加工技术[J]. 江苏调味副食品, 2022(2): 27-29. CHANG K, XIANG S B, LI L, et al. Dry processing technology of Stropharia rugosoannulata[J]. Jiangsu Condiment and Subsidiary Food, 2022(2): 27-29.
[5] 侯会, 陈鑫, 方东路, 等. 干燥方式对食用菌风味物质影响研究进展[J]. 食品安全质量检测学报, 2019, 10(15): 4 877-4 883. HOU H, CHEN X, FANG D L, et al. Research progress on influence of drying methods on flavor compounds of edible fungus[J]. Journal of Food Safety and Quality, 2019, 10(15): 4 877-4 883.
[6] ZHAO H, WU K. Annual performance analysis of heat pump drying system with waste heat recovery[J]. Sustainable Energy Technologies and Assessments, 2022, 53: 102625.
[7] 韩骞, 李梅, 曹放, 等. 不同预处理方式对冷冻干燥大球盖菇脆片品质的影响[J]. 保鲜与加工, 2022, 22(6): 53-57. HAN Q, LI M, CAO F, et al. Effects of different pretreatment methods on the quality of freeze-dried Stropharia rugosoannulata crisps[J]. Storage and Process, 2022, 22(6): 53-57.
[8] 张荔喆, 张学军, 范誉斌, 等. 热泵干燥技术研究进展及其在香菇干燥中的应用[J]. 制冷与空调, 2019, 19(7): 77-83, 87. ZHANG L Z, ZHANG X J, FAN Y B, et al. Research progress of heat pump drying technology and its application in drying of shiitake mushrooms[J]. Refrigeration and Air-Conditioning, 2019, 19(7): 77-83, 87.
[9] 胡思, 黄文, 王益, 等. 大球盖菇粉的热风干燥工艺研究[J]. 食品科技, 2020, 45(3): 135-141. HU S, HUAGN W, WANG Y, et al. Process on hot air drying of Stropharia rugoso-annulata powder[J]. Food Science and Technology, 2020, 45(3): 135-141.
[10] 朱铭亮. 大球盖菇微波真空干燥工艺的研究[D]. 福州: 福建农林大学, 2012: 9-10. ZHU M L. Study on the technology of microwave vacuum drying about Stropharia rugoso-annulata[D]. Fuzhou: Fujian Agriculture and Forestry University, 2012: 9-10.
[11] YAN J, WU L, QIAO Z, et al. Effect of different drying methods on the product quality and bioactive polysaccharides of bitter gourd (Momordi cacharantia L.) slices[J]. Food Chemistry, 2019, 271: 588-596.
[12] ZHAO X T, DONG Q Y, ZHOU H B, et al. Drying kinetics, physicochemical properties, antioxidant activity and antidiabeticpotential of Sargassum fusiforme processed under four drying techniques[J]. LWT-Food Science and Technology, 2022, 163: 113578.
[13] 矫丽曼. 羊肚菌胞内多糖的提取及单糖组成分析[J]. 西部林业科学, 2016, 45(4): 130-135. JIAO L M. Extraction and monosaccharide composition of intracellular polysaccharide of Morchella conica Fr[J]. Journal of West China Forestry Science, 2016, 45(4): 130-135.
[14] DZIECIO M, WRBLEWSKA A, MILCZAREK J K. Comparative studies of DPPH radical scavenging activity and content of bioactive compounds in maca (Lepidium meyenii) root extracts obtained by various techniques[J]. Applied Sciences, 2023, 13(8): 26-33.
[15] JENSON G, DAVID E, SHARON P, et al. Evaluation of antioxidant capacity (ABTS and CUPRAC) and total phenolic content (folin-ciocalteu) assays of selected fruit, vegetables, and spices[J]. International Journal of Food Science, 2022, 2 022: 47-63.
[16] 李伟, 张旭, 吴明江. HPLC法分析羊栖菜与铜藻多糖的单糖组成[J]. 高师理科学刊, 2015, 35(7): 49-53. LI W, ZHANG X, WU M J. Analysis of the monosaccharide composition of polysaccharides from Sargassum fusiorme and Sargassum horneri by HPLC[J]. Journal of Science of Teachers' College and University, 2015, 35(7): 49-53.
[17] 焦旭雯, 梁蔚阳. HPGPC法测定麦芽糖铁糖浆分子量与分子量分布[J]. 中国生化药物杂志, 2015, 35(10): 131-133. JIAO X W, LIANG W Y. Determination of molecular weight and weight distribution in iron maltose syrup by HPGPC[J]. Chinese Journal of Biochemical and Pharmaceuticals, 2015, 35(10): 131-133.
[18] LI M, YANG R, ZHANG H, et al. Development of aflavor fingerprint by HS-GC-IMS with PCA forvolatile compounds of Tricholoma matsutake Singer[J]. Food Chemistry, 2019, 290: 79-84.
[19] BELUHAN S, RANOGAJEC A. Chemical composition and non-volatile components of croatian wild edible mushrooms[J]. Food Chemistry, 2010, 124(3): 1 076-1 082.
[20] REID T, MUNYANYI M, MDULUZA T. Effect of cooking and preservationon nutritional and phytochemical composition of the mushroom Amanita zambiana[J]. Food Science & Nutrition, 2017, 5(3): 538-544.
[21] 李程勋, 徐晓俞, 李爱萍. 不同干燥温度对玫瑰花茶外观和总黄酮含量的影响[J]. 食品工业, 2022, 43(9): 44-46. LI C X, XU X Y, LI A P. Effects of different drying processes on apparent and total flavonoids in rose tea[J]. The Food Industry, 2022, 43(9): 44-46.
[22] 吴茂江. 钾与人体健康[J]. 微量元素与健康研究, 2011, 28(6): 61-62. WU M J. Potassium and human health[J]. Studies of Trace Elements and Health, 2011, 28(6): 61-62.
[23] 陈晓麟, 王强. 不同干制方式对香菇甲醛及复水性的影响研究[J]. 食品科技, 2013, 38(9): 61-64. CHEN X L, WANG Q. Analysis of rehydration and formaldehyde in the Lentinus edodes by different dried methods[J]. Food Science and Technology, 2013, 38(9): 61-64.
[24] YIN M, MATSUOKA R, YANAGISAWA T, et al. Effect of different drying methods on free amino acid and flavor nucleotides of scallop (Patinopecten yessoensis) adductor muscle[J]. Food Chemistry, 2022, 396: 133620.
[25] FAO/WHO, Hoc Expert Committee. Energy and protein equirement[R]. Rome: World Health Organization, FAO, 1973: 3-6.
[26] 石芳, 李瑶, 杨雅轩, 等. 不同干燥方式对松茸品质的影响[J]. 食品科学, 2018, 39(5): 141-147. SHI F, LI Y, YANG Y X, et al. Effect of different drying methods on the quality of Tricholoma matsutake[J]. Food Science, 2018, 39(5): 141-147.
[27] BOUDHRIOUA N, BAHLOUL N, BEN SLIMEN I, et al. Comparison on the total phenol contents and the color of fresh and infrared dried olive leaves[J]. Industrial Crops and Products, 2009, 29(2): 412-419.
[28] MLANIE N F, MATTEO C, SONIA D, et al. Heat pump drying of lavender flowers leads to decoctions richerin bioactive compounds[J]. Agronomy, 2022, 12(12): 122-129.
[29] ZHANG M, WANG F, LIU R, et al. Effects of superfine grinding on physicochemical and antioxidant properties of Lycium barbarum polysaccharides[J]. LWT-Food Science and Technology, 2014, 58(2): 594-601.
[30] XU K, MARTINEZ M M, YANG B, et al. Finestructure, physicochemical and antioxidant properties of LM-pectins from okra pods dried under different techniques[J]. Carbohydrate Polymers, 2020, 241: 116272.
[31] XIN X, LEI Z, YAGOUB A E A, et al. Effects of ultrasound, freeze-thaw pretreatments and drying methods on structure and functional properties of pectin during the processing of okra[J]. Food Hydrocolloids, 2021, 120: 106965.
[32] ONWUDE D I, HASHIM N, CHEN G. Recent advances of novel thermal combined hot air drying of agricultural crops[J]. Trends in Food Science & Technology, 2016, 57: 132-145.
[33] FERNANDES A, BARROS L, BARREIRA J C M, et al. Effects of different processing technologies on chemical and antioxidant parameters of Macrolepiota procera wild mushroom[J]. LWT-Food Science and Technology, 2013, 54(2): 493-499.
[34] ZHANG J, YAGOUB A E A, SUN Y, et al. Role of thermal and non-thermal drying techniques on drying kinetics and the physicochemical properties of shiitake mushroom[J]. Journal of the Science of Food and Agriculture, 2022, 102(1): 214-222.
[35] 李佳霖, 杨焱, 李文, 等. 大球盖菇干制过程香气变化规律及与关键酶促反应的关联性[J]. 食品科学技术学报, 2023, 41(1): 30-42. LI J L, YANG Y, LI W, et al. Aroma change and its relationship with key enzymatic reactions in drying process of Stropharia rugoso-annulata[J]. Journal of Food Science and Technology, 2023, 41(1): 30-42.
[36] 唐秋实, 刘学铭, 池建伟, 等. 不同干燥工艺对杏鲍菇品质和挥发性风味成分的影响[J]. 食品科学, 2016, 37(4): 25-30. TANG S Q, LIU X M, CHI J W, et al. Effects of different drying methods on quality and volatile components of Pleurotus eryngii[J]. Food Science, 2016, 37(4): 25-30.
[37] 张乐, 李鹏, 王赵改, 等. 不同干燥方式对香菇品质的影响[J]. 天津农业科学, 2015, 21(7): 149-154. ZHANG L, LI P, WANG Z G, et al. Effects of different drying methods on quality of Lentinus edodes[J]. Tianjin Agricultural Sciences, 2015, 21(7): 149-154.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.