•  
  •  
 

Corresponding Author(s)

王勇(1989—),男,河南省信阳市畜产品质量检验监测中心兽医师,硕士。E-mail: ywang@vip.henu.edu.cn

Abstract

Amide alcohol drugs have a long half-life and are difficult to excrete through the metabolic process after entering the human body. Excessive amide alcohol drugs will cause serious harm to human organs. Therefore, China has formulated a strict maximum residue limit standard for amide alcohol drugs, in which chloramphenicol can’t be detected in all edible tissues. This review introduces the application of chromatography, mass spectrometry, electrochemical method, electrochemiluminescence method, immunoassay, fluorescence method and surface-enhanced Raman spectroscopy method in the detection of amide alcohol drugs in animal-origin foods, and the advantages and disadvantages of these methods are analyzed and new techniques for the detection of amidol alcohol drugs in the future are prospected.

Publication Date

3-27-2024

First Page

233

Last Page

239

DOI

10.13652/j.spjx.1003.5788.2023.80588

References

[1] ZHANG Y X, GUO P Y, WANG M X, et al. Mixture toxicity effects of chloramphenicol,thiamphenicol, florfenicol in daphnia magna under different temperatures[J]. Ecotoxicology, 2021, 30: 31-42.
[2] SANG P T, HU Z G, CHENG Y L, et al. Exonuclease III-assisted nucleic acid amplification fluorescence immunoassay for the ultrasensitive detection of chloramphenicol in milk[J]. Sensors and Actuators B: Chemical, 2021, 347: 130564.
[3] 马鹏飞, 齐硕, 吕艳, 等. 基于二氧化锰纳米片和核酸外切酶I构建荧光适配体传感器检测氯霉素[J]. 食品与机械, 2021, 37(4): 53-57. MA P F, QI S, LU Y, et al. Fluorescence aptasensor detection of chloramphenicol based on MnO2 nanosheet and Exo-I[J]. Food & Machinery, 2021, 37(4): 53-57.
[4] SA-NGUANPRANG S, PHURUANGRAT A, BUNKOED O. Anoptosensor based on a hybrid sensing probe of mesoporous carbon and quantum dots embedded in imprinted polymer for ultrasensitive detection of thiamphenicol in milk[J]. Spectrochimica Acta Part A, 2022, 264: 120324.
[5] VURAN B, ULUSOY H I, SARP G, et al. Determination of chloramphenicol and tetracycline residues in milk samples by means of nanofiber coated magnetic particles prior to high-performance liquid chromatography-diode array detection[J].Talanta, 2021, 230: 122307.
[6] SHIROMA L S, QUEIROZ S C N, JONSSON M C, et al. Extraction strategies for simultaneous determination of florfenicol and florfenicolamine in tilapia (oreochromisniloticus) muscle: Quantification by LC-MS/MS[J]. Food Analytical Methods, 2020, 13: 291-302.
[7] CHEN D M, DELMAS J M, HURTAUD-PESSEL D, et al. Development of a multi-class method to determine nitroimidazoles, nitrofurans, pharmacologically active dyes and chloramphenicol in aquaculture products by liquid chromatography-tandem mass spectrometry[J]. Food Chemistry, 2020, 311: 125924.
[8] HE B S, WANG S Y. An electrochemical aptasensor based on PEI-C3N4/AuNWs for determination of chloramphenicol via exonuclease-assisted signal amplification[J]. Microchimica Acta, 2021, 188: 22.
[9] MA G Y, WU P P, WU K, et al. A novel electrochemiluminescence immunoassay based on highly efficient resonance energy transfer for florfenicol detection[J]. Talanta, 2021, 235: 122732.
[10] LIU S, BAI J L, HUO Y P, et al. A zirconium-porphyrin MOF-based ratiometric fluorescent biosensor for rapid and ultrasensitive detection of chloramphenicol[J]. Biosensors and Bioelectronics, 2020, 149: 111801.
[11] ZHAO M T, LI X L, ZHANG Y L, et al. Rapid quantitative detection of chloramphenicol in milk by microfluidic immunoassay[J]. Food Chemistry, 2021, 339: 127857.
[12] JAYAN H, SUN D W, PU H B, et al. Mesoporous silica coated core-shell nanoparticles substrate for size-selective SERS detection of chloramphenicol[J]. Spectrochimica Acta Part A, 2023, 284: 121817.
[13] 钟菲菲, 李静, 雷德卿, 等. HPLC法同时测定湘莲中芦丁、金丝桃苷及槲皮素含量[J]. 食品与机械, 2023, 39(9): 57-64. ZHONG F F, LI J, LEI D Q, et al. Determination of rutin, hyperoside, quercetin in Xiang lotus by HPLC[J]. Food & Machinery, 2023, 39(9): 57-64.
[14] HAMEEDAT F, HAWAMDEH S, ALNABULSI S, et al. High performance liquid chromatography (HPLC) with fluorescence detection for quantification of steroids in clinical, pharmaceutical, and environmental samples: A review[J]. Molecules, 2022, 27: 1 807.
[15] MOUDGIL P, BEDI J S, AULAKH R S, et al. Validation of HPLC multi-residue method for determination of fluoroquinolones, tetracycline, sulphonamides and chloramphenicol residues in bovine milk[J]. Food Analytical Methods, 2019, 12: 338-346.
[16] WANG B, XIE X, ZHAO X, et al. Development of an accelerated solvent extraction-ultra-performance liquid chromatography-fluorescence detection method for quantitative analysis of thiamphenicol, florfenicol and florfenicolamine in poultry eggs[J]. Molecules, 2019, 24(9): 1 830.
[17] 王洋, 韩维岐, 郭莉莉, 等. 浊点萃取—高效液相色谱法同时测定烟用接装纸中可萃取Cr(Ⅲ)和Cr(Ⅵ)[J]. 中国测试, 2022, 48(7): 72-76. WANG Y, HAN W Q, GUO L L, et al. Simultaneous determination of extractable Cr(Ⅲ) and Cr(Ⅵ) in cigarette tipping paper by cloudpoint extraction-high performance liquid chromatography method[J]. China Measurement & Test, 2022, 48(7): 72-76.
[18] SRC B, ULUSOY H I, ULUSOY S, et al. Application of cloud point extraction for residues of chloramphenicol and amoxicillin in milk samples by HPLC-DAD[J]. European Food Research and Technology, 2022, 248: 437-445.
[19] 胡红美, 郭远明, 孙秀梅, 等. 超声波萃取-PSA净化—气相色谱法测定水产品中氯霉素[J]. 浙江海洋学院学报(自然科学版), 2016, 35(3): 222-227. HU H M, GUO Y M, SUN X M, et al. Determination of chloramphenicol and florfenicol in fishery products by gas chromatography combined with ultrasonic extraction and PSA purification[J]. Journal of Zhejiang Ocean University(Natural Science), 2016, 35(3): 222-227.
[20] SAITO-SHIDA S, SHIONO K, NARUSHIMA J, et al. Determination of total florfenicol residues as florfenicol amine in bovine tissues and eel by liquid chromatography-tandem mass spectrometry using external calibration[J]. Journal of Chromatography B, 2019, 1 109: 37-44.
[21] XIE X, WANG B, PANG M D, et al. Quantitative analysis of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in eggs via liquid chromatography-electrospray ionization tandem mass spectrometry[J]. Food Chemistry, 2018, 269: 542-548.
[22] 劳哲, 江恩源, 朱国强. 在线凝胶渗透色谱—气相色谱串联质谱法测定动物源性食品中氯霉素[J]. 分析试验室, 2020, 39(6): 726-730. LAO Z, JIANG E Y, ZHU G Q. Determination of chloramphenicol in animal derived food by on-line gel permeation chromatography-gas chromatography-tandem mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2020, 39(6): 726-730.
[23] ZHOU T Y, ZHANG F S, LIU H C, et al. Microwave-assisted preparation of boron acid modified expanded graphite for the determination of chloramphenicol in egg samples[J]. Journal of Chromatography A, 2018, 1 565: 29-35.
[24] ZENG S D, YE J Z, LIN L, et al. Rapid determination of chloramphenicol in tilapia by ultra-high performance liquid chromatography-mass spectrometry[J]. E3S Web of Conferences, 2019, 78: 02005.
[25] 仲伶俐, 雷欣宇, 李曦, 等. 超高效液相色谱—串联质谱法同时测定水产品中4种酰胺醇类抗生素残留[J]. 食品安全质量检测学报. 2021, 12(22): 8 687-8 694. ZHONG L L, LEI X Y, LI X, et al. Simultaneous determination of 4 kinds of amidol antibiotics residues in aquatic products by ultra performance liquid chromatography-tandem mass spectrometry[J]. Journal of Food Safety and Quality, 2021, 12(22): 8 687-8 694.
[26] 王波, 赵霞, 谢恺舟, 等. 超高效液相色谱—串联质谱检测鹌鹑蛋中氯霉素类药物残留[J]. 分析试验室, 2019, 38(4): 442-448. WANG B, ZHAO X, XIE K Z, et al.Studies on method for the determination of chloramphenicols in quail eggs by ultra performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2019, 38(4): 442-448.
[27] 周鸿燕, 宋鋆. 基于Fe3O4@TiO2@Au的电化学传感器用于芦丁检测[J]. 食品与机械, 2023, 39(6): 81-87. ZHOU H Y, SONG Y. Rutin detection by electrochemical sensor based on Fe3O4@TiO2@Au[J]. Food & Machinery, 2023, 39(6): 81-87.
[28] LI T, SHANG D, GAO S, et al. Two-dimensional material-based electrochemical sensors/biosensors for food safety and biomolecular detection[J]. Biosensors, 2022, 12(5): 314.
[29] 杨启, 李恳恳, 魏培媛, 等. 基于氮掺杂钴金属有机框架材料修饰电极电化学传感器灵敏检测盐酸克伦特罗[J]. 分析化学, 2023, 51(4): 559-569. YANG Q, LI K K, WEI P Y, et al. Sensitive detection of clenbuterol by electrochemical sensor based on N-doped cobalt metal organic framework modified electrode[J]. Chinese Journal of Analytical Chemistry, 2023, 51(4): 559-569.
[30] ALAM M M, ASIRI A M, HASNAT M A, et al. Detection of L-aspartic acid with Ag-doped ZnO nanosheets using differential pulse voltammetry[J]. Biosensors, 2022, 12: 379.
[31] TANG Y, LIU Y W, XIA Y D, et al. Simultaneous detection of ovarian cancer-concerned HE4 and CA125 markers based on Cu single-atom-triggered CdS QDs and Eu MOF@isoluminol ECL[J]. Analytical Chemistry, 2023, 95(10): 4 795-4 802.
[32] GAO S, YANG Z M, ZHANG Y Q, et al. The synergistic effects of MoS2 and reduced graphene oxide on sensing performances for electrochemical chloramphenicol sensor[J]. Flat Chem, 2022, 33: 100364.
[33] WANG S Y, HE B S, REN W J, et al. Triple-helix molecular switch triggered cleavage effect of DNAzyme for ultrasensitive electrochemical detection of chloramphenicol[J]. ACS Applied Materials & Interfaces, 2022, 14: 24 681-24 689.
[34] CHETTIPALAYAM A D, KARUPPAIYA P, NATARAJAN R, et al. Development of amine-based transition metal MOFs as efficient electrochemical sensors for the detection of chloramphenicol in food and pharmaceutical samples[J]. Electrochimica Acta, 2023, 470: 143358.
[35] PAKAPONGPAN S, POO-ARPORN Y, TUANTRANONT A, et al. A facile one-pot synthesis of magnetic iron oxide nanoparticles embed N-doped graphene modified magnetic screen printed electrode for electrochemical sensing of chloramphenicol and diethylstilbestrol[J]. Talanta, 2022, 241: 123184.
[36] YANG J, ZHONG W, YU Q, et al. MXene-AuNP-based electrochemical aptasensor for ultra-sensitive detection of chloramphenicol in honey[J]. Molecules, 2022, 27: 1 871.
[37] FAN A P, YANG G M, YANG H P, et al. Synthesis and application of dendritic Pt-Pd bimetallic nanoparticles in imprinted electrochemical sensor for the determination of florfenicol[J]. Mater Today Communications, 2020, 25: 101448.
[38] LU Z W, LI S Y, LI Y F, et al. DFT-assisted design inspired by loofah-derived biomass carbon decorated CoFe-CoFe2O4 conjugated molecular imprinting strategy for hazardous thiamphenicol analysis in spiked food[J]. Sensors and Actuators B: Chemical, 2023, 374: 132852.
[39] JOU A F J, LIU C L, TSAI S E, et al. Fabrication of polydopamine nanoparticles-based electrochemical sensor for geometry-sensitive detection of chloramphenicol[J]. Journal of Electroanalytical Chemistry, 2023, 929: 117127.
[40] BATISH S, RAJPUT J K. Quercetin capped silver nanoparticles as an electrochemical sensor for ultrasensitive detection of chloramphenicol in food and water samples[J]. Journal of Food Composition and Analysis, 2023, 122: 105421.
[41] ZHANG X Y, MA Q Q, LIU X F, et al. A turn-off Eu-MOF@Fe2+ sensor for the selective and sensitive fluorescence detection of bromate in wheat flour[J]. Food Chemistry, 2022, 382: 132379.
[42] YI J Q, LI X S, CUI D, et al. Fabricating UCNPs-AuNPs fluorescent probe for sensitive sensing thiamphenicol[J]. Chemical Research in Chinese Universities, 2022, 38: 1 453-1 460.
[43] ZHANG Q, DUAN S B, HUANG Y N, et al. Dual-band fluorescence detection of double-stranded DNA with QDs-Mn2+-pefloxacin[J]. Colloids and Surfaces B: Biointerfaces, 2022, 217: 112649.
[44] SADEGHI S, OLIEAEI S. Capped cadmium sulfide quantum dots with a new ionic liquid as a fluorescent probe for sensitive detection of florfenicol in meat samples[J]. Spectrochimica Acta Part A, 2019, 223: 117349.
[45] SA-NGUANPRANG S, PHURUANGRAT A, BUNKOED O. An optosensor based on a hybrid sensing probe of mesoporous carbon and quantum dots embedded in imprinted polymer for ultrasensitive detection of thiamphenicol in milk[J]. Spectrochimica Acta Part A, 2022, 264: 120324.
[46] WU Z H, SUN D W, PU H B, et al. A novel fluorescence biosensor based on CRISPR/Cas12a integrated MXenes for detecting Aflatoxin B1[J]. Talanta, 2023, 252: 123773.
[47] LI Y B, WANG L, ZHAO L T, et al. An fluorescence resonance energy transfer sensing platform based on signal amplification strategy of hybridization chain reaction and triplex DNA for the detection of chloramphenicol in milk[J]. Food Chemistry, 2021, 357: 129769.
[48] 成玉梁. 以大豆蛋白为模板金纳米簇的合成和应用[D]. 无锡: 江南大学, 2018: 22-23. CHENG Y L. Synthesis and applications of soy protein-templated gold nanoclusters[D]. Wuxi: Jiangnan University, 2018: 22-23.
[49] 成玉梁, 李恒超, 谢云飞, 等. 荧光金纳米簇用于猪肉中氯霉素快速检测的研究[J]. 安徽农业科学, 2020, 48(7): 213-218. CHENG Y L, LI H C, XIE Y F, et al. Study on rapid detection of chloramphenicol in pork by fluorescent gold nanoclusters[J]. Journal of Anhui Agricultural Sciences, 2020, 48(7): 213-218.
[50] VALLAN L, URRIOLABEITIA E P, RUIPREZ F, et al. Supramolecular-enhanced charge transfer within entangled polyamide chains as the origin of the universal blue fluorescence of polymer carbon dots[J]. Journal of the American Chemical Society, 2018, 140(40): 12 862-12 869.
[51] FU J L, ZHOU S, WU X D, et al. Down/up-conversion dual-mode ratiometric fluorescence imprinted sensor embedded with metal-organic frameworks for dual-channel multi-emission multiplexed visual detection of thiamphenicol[J]. Environmental Pollution, 2022, 309: 119762.
[52] 欧阳子程. 蔬菜中百草枯残留的免疫学快速检测方法学研究[D]. 深圳: 深圳大学, 2021: 11-12. OUYANG Z C.Rapid and immunological detection of paraquat residue in vegetables[D]. Shenzhen: Shenzhen University, 2021: 11-12.
[53] XIANG T Y, XU X X, XU L G, et al. Gold-based immunochromatographic strip assay for detecting dimethomorph in vegetables[J]. New Journal of Chemistry, 2022, 46(8): 3 882-3 888.
[54] LEI X L, XU L G, SONG S S, et al. Development of an ultrasensitive ic-ELISA and immunochromatographic strip assay for the simultaneous detection of florfenicol and thiamphenicol in eggs[J]. Food and Agricultural Immunology, 2018, 29(1): 254-266.
[55] 赵天睿, 雷镒妃, 许灏钧, 等. 时间分辨荧光免疫分析的研究进展[J]. 中国兽医科学, 2023, 53(4): 520-525. ZHAO T R, LEI Y F, XU H J, et al. Progress in time-resolved fluorescence immunoassay[J]. Chinese Veterinary Science, 2023, 53(4): 520-525.
[56] 崔乃元, 赵义良, 马立才, 等. 水产品中氯霉素时间分辨荧光免疫层析定量检测方法的研究[J]. 食品与发酵工业, 2019, 45(24): 241-245. CUI N Y, ZHAO Y L, MA L C, et al. Quantitative determination of chloramphenicol in aquatic products by time-resolved fluorescence immunochromatography[J]. Food and Fermentation Industries, 2019, 45(24): 241-245.
[57] 闫帅, 李永玉, 彭彦昆, 等. 表面增强拉曼光谱结合化学计量学快速检测鸡蛋中的喹诺酮类抗生素残留[J]. 分析化学, 2022, 50(10): 1 578-1 586. YAN S, LI Y Y, PENG Y K, et al. Rapid detection of quinolone antibiotics residues in chicken eggs by surface-enhanced raman spectroscopy combined with chemometrics[J]. Chinese Journal of Analytical Chemistry, 2022, 50(10): 1 578-1 586.
[58] LI X D, ZHOU H L, WANG L H, et al. SERS paper sensor based on three-dimensional ZnO@Ag nanoflowers assembling on polyester fiber membrane for rapid detection of florfenicol residues in chicken[J]. Journal of Food Composition and Analysis, 2023, 115: 104911.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.