•  
  •  
 

Abstract

Objective: To solve the problems of low accuracy and poor efficiency in the existing rice quality testing methods of food enterprises. Methods: Based on a hyperspectral data acquisition system, a fast and non-destructive detection method for stored rice quality was proposed, which combined an improved bacterial foraging algorithm and least squares support vector machine. By applying the improved bacterial foraging algorithm, the hyperparameters (regularization parameter and kernel parameter) of the least squares support vector machine were optimized to achieve rapid and non-destructive detection of rice quality. its performance was analyzed through experiments. Results: The proposed method can achieve rapid and non-destructive detection of fatty acid content in stored rice, with a determination coefficient of 0.940 5, root mean square error of 0.543 5, and an average detection time of 1.12 seconds. Conclusion: The proposed detection method has high detection performance, which can be used for the identification and detection of rice quality.

Publication Date

3-27-2024

First Page

57

Last Page

62

DOI

10.13652/j.spjx.1003.5788.2023.60168

References

[1] 石小晶, 姚安阳, 李思维, 等. 我国大米品质研究发展动态的可视化分析[J]. 粮食问题研究, 2021, 6(2): 34-39, 51. SHI X J, YAO A Y, LI S W, et al. Visual analysis of the development dynamics of rice quality research in China[J]. Research on Food Issues, 2021, 6(2): 34-39, 51.
[2] 项辉宇, 薛真, 冷崇杰, 等. 基于Halcon的苹果品质视觉检测试验研究[J]. 食品与机械, 2016, 32(10): 123-126. XIANG H Y, XUE Z, LENG C J, et al. Experimental study on visual inspection of apple quality based on Halcon[J]. Food & Machinery, 2016, 32(10): 123-126.
[3] 刘美辰, 薛河儒, 刘江平, 等. 牛奶蛋白质含量的SSA-SVM 高光谱预测模型[J]. 光谱学与光谱分析, 2022, 42(5): 1 601-1 606. LIU M C, XUE H R, LIU J P, et al. SSA-SVM hyperspectral prediction model for milk protein content[J]. Spectroscopy and Spectral Analysis, 2022, 42(5): 1 601-1 606.
[4] 邓杨, 王粤, 尚玉婷. 基于深度学习的大米垩白分割算法研究[J]. 中国粮油学报, 2021, 12(4): 139-144. DENG Y, WANG Y, SHANG Y T. Research on rice chalkiness segmentation algorithm based on deep learning[J]. Chinese Journal of Cereals and Oils, 2021, 12(4): 139-144.
[5] 罗浩东, 刘翠玲, 孙晓荣, 等. 基于高光谱成像技术的大米溯源研究[J]. 中国酿造, 2021, 40(4): 183-186. LUO H D, LIU C L, SUN X R, et al. Research on rice traceability based on hyperspectral imaging technology[J]. Chinese Brewing, 2021, 40(4): 183-186.
[6] 王朝辉, 赵层, 赵倩, 等. 基于高光谱成像的大米中蛋白质含量的可视化研究[J]. 食品研究与开发, 2020, 41(6): 124-129. WANG C H, ZHAO C, ZHAO Q, et al. Visualization of protein content in rice based on hyperspectral imaging[J]. Food Research and Development, 2020, 41(6): 124-129.
[7] 翁士状, 唐佩佩, 张雪艳, 等. 高光谱成像的图谱特征与卷积神经网络的名优大米无损鉴别[J]. 光谱学与光谱分析, 2020, 40(9): 2 826-2 833. WENG S Z, TANG P P, ZHANG X Y, et al. Spectral features of hyperspectral imaging and non-destructive identification of high-quality rice using convolutional neural networks[J]. Spectroscopy and Spectral Analysis, 2020, 40(9): 2 826-2 833.
[8] 孙俊, 靳海涛, 芦兵, 等. 基于高光谱图像及深度特征的大米蛋白质含量预测模型[J]. 农业工程学报, 2019, 35(15): 295-303. SUN J, JIN H T, LU B, et al. A prediction model for rice protein content based on hyperspectral images and depth features[J]. Journal of Agricultural Engineering, 2019, 35(15): 295-303.
[9] 肖仕杰, 王巧华, 李春芳, 等. 傅里叶变换中红外光谱的牛奶品质无损检测分级[J]. 光谱学与光谱分析, 2022, 42(4): 1 243-1 249. XIAO S J, WANG Q H, LI C F, et al. Non destructive testing and grading of milk quality using Fourier transform mid infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2022, 42(4): 1 243-1 249.
[10] 王丰霞, 冯骁骄. 凯氏定氮法检测牛奶中蛋白质含量的不确定度评定[J]. 粮食加工, 2022, 47(4): 127-129. WANG F X, FENG X J. Evaluation of uncertainty in the determination of protein content in milk by Kjeldahl nitrogen method[J]. Grain Processing, 2022, 47(4): 127-129.
[11] 夏杨毅, 赵鸾. 高光谱成像技术在肉类安全无损检测的应用研究进展[J]. 食品与生物技术学报, 2020, 39(12): 6-13. XIA Y Y, ZHAO L. Research progress on the application of hyperspectral imaging technology in non-destructive testing of meat safety[J]. Food Science and Biotechnology, 2020, 39(12): 6-13.
[12] 李琴, 朱家明, 郎红, 等. 基于带 RBF核的 SVM 模型对红酒品质的精准分类[J]. 湖北大学学报(自然科学版), 2021, 43(4): 417-422. LI Q, ZHU J M, LANG H, et al. Accurate classification of red wine quality based on SVM model with RBF kernel[J]. Journal of Hubei University (Natural Science Edition), 2021, 43(4): 417-422.
[13] 胡鹏伟, 刘江平, 薛河儒, 等. BP神经网络结合变量选择方法在牛奶蛋白质含量检测中的应用[J]. 光电子·激光, 2022, 33(1): 23-29. HU P W, LIU J P, XUE H R, et al. The application of BP neural network combined with variable selection method in the detection of milk protein content[J]. Optoelectron Laser, 2022, 33(1): 23-29.
[14] 殷坤, 刘金明, 张东杰, 等. 基于近红外光谱的大米蛋白质含量快速检测[J]. 食品与机械, 2021, 37(5): 82-88, 175. YIN K, LIN J M, ZHANG D J, et al. Rapid detection of rice protein content based on near-infrared spectroscopy[J]. Food & Machinery, 2021, 37(5): 82-88, 175.
[15] 周雨帆, 李胜旺, 杨奎河, 等. 基于轻量级卷积神经网络的苹果表面缺陷检测方法[J]. 河北工业科技, 2021, 38(5): 388-394. ZHOU Y F, LI S W, YANG K H, et al. Apple surface defect detection method based on lightweight convolutional neural network[J]. Hebei Industrial Technology, 2021, 38(5): 388-394.
[16] 杨双艳, 杨紫刚, 张四伟, 等. 基于近红外光谱和PSO-SVM算法的烟叶自动分级方法[J]. 贵州农业科学, 2018, 46(12): 141-144. YANG S Y, YANG Z G, ZHANG S W, et al. Automatic tobacco grading method based on near infrared spectroscopy and PSO-SVM algorithm[J]. Guizhou Agricultural Sciences, 2018, 46(12): 141-144.
[17] 王阳阳, 黄勋, 陈浩, 等. 基于同态滤波和改进K-means的苹果分级算法研究[J]. 食品与机械, 2019, 35(12): 47-51, 112. WANG Y Y, HUANG X, CHEN H, et al. Apple grading algorithm based on homomorphic filtering and improved K-means[J]. Food & Machinery, 2019, 35(12): 47-51, 112.
[18] 王立扬, 张瑜, 沈群, 等. 基于改进型LeNet-5的苹果自动分级方法[J]. 中国农机化学报, 2020, 41(7): 105-110. WANG L Y, ZHANG Y, SHEN Q, et al. Automatic apple classification method based on improved LeNet-5[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(7): 105-110.
[19] 杨志锐, 郑宏, 郭中原, 等. 基于网中网卷积神经网络的红枣缺陷检测[J]. 食品与机械, 2020, 36(2): 140-145, 181. YANG Z R, ZHENG H, GUO Z Y, et al. Defect detection of jujube based on convolutional neural network of net in net[J]. Food & Machinery, 2020, 36(2): 140-145, 181.
[20] 吴静珠, 李晓琪, 林珑, 等. 基于AlexNet卷积神经网络的大米产地高光谱快速判别[J]. 中国食品学报, 2022, 22(1): 282-288. WU J Z, LI X Q, LIN L, et al. Rapid hyperspectral discrimination of rice production areas based on AlexNet convolutional neural network[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(1): 282-288.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.